Scoping Study for Monitoring Wetland Extent and Condition

Scoping Study for Monitoring Wetland Extent and Condition

Author

Diane Conrick

This is the final report for the Scoping Study for Monitoring of Wetlands Extent and Condition project (WL NRM 04) of the Queensland Wetlands Programme, a joint initiative between the Australian and Queensland governments. The Queensland Wetlands Programme was established in 2003 to protect and conserve Queensland's wetlands.

Acknowledgements

The author gratefully acknowledges the contributions to this report by Iris Haring (Project Officer), the members of the Project Team and the Steering Committee, the working group of the Department of Natural Resources and Water and the Environment Protection Agency officers that developed the Wetland Description Tool, and Kate Moore (University of Queensland) who illustrated the conceptual models. The participants of the workshop are also gratefully acknowledged, as are the workshop facilitators, Mary Maher (Mary Maher & Associates) and Emma Hawkins (Lloyd Consulting).

The Scoping Study for Monitoring of Wetlands Extent and Condition project team consisted of: Mike Ronan, Arthur Knight and Mark Cushing of the Environmental Protection Agency; Jon Marshall, Peter Negus and Christine White of the Department of Natural Resources and Water; Brian Stockwell of the Department of Primary Industries and Fisheries; Bruce Gray and Linda Collins of the Department of the Environment, Heritage, Water and the Arts; Donna Audas of the Great Barrier Marine Park Authority; and Kay Montgomery from SEQ Catchments.

The Scoping Study for Monitoring of Wetlands Extent and Condition project reference team consisted of: Peter Macdonald and Lynne Tuner of the Environmental Protection Agency; Paul Lawrence and Satish Choy of the Department of Natural Resources and Water; Veronica Blazely of the Department of the Environment, Heritage, Water and the Arts; and Donna Audas of the Great Barrier Reef Marine Park Authority.

Disclaimer:

The views expressed and the conclusions reached in this publication are those of the authors and not necessarily those of the person consulted. The Queensland and Australian governments shall not be responsible in any way whatsoever to any person who relies in whole or part on the contents of this report.

This publication is copyright. However, the Queensland and Australian governments encourage wide dissemination of its contents and research, providing the governments are clearly acknowledged.

This report may be cited as: Scoping Study for Monitoring Wetland Extent and Condition, 2007.

978-0-9805174-1-5

Contents

List of figures	vii
List of tables	ix
List of appendices	xi
Attachments	Xi
Abbreviations and Acronyms	xii
Executive Summary	xv
1 Introduction	2
1.1 Wetlands in Queensland	2
1.2 Wetland Indicators Scoping Study	3
1.3 Project Objectives	4
2 Methods	5
3 Literature search	6
3.1 National resource condition indicators	6
3.2 Current programs and indicators in Australia	6
3.3 Manuals and reviews	38
4 Wetland Classification	41
4.1 Wetland definition	41
4.2 Wetland types and sub-types	41
4.3 Wetland Description Tool	43
4.4 Identification of Queensland wetland types	47
5 A Monitoring Framework	48
5.1 Indicator criteria	48
5.2 Indicator considerations	
5.3 The framework	
5.4 Conceptual Models	50
6 Application of the Framework in Queensland	51
6.1 Stream and Estuarine Assessment Program	51
6.2 Ecosystem Health Monitoring Program	
6.3 eWater	
6.4 Lake Eyre Basin	
6.5 Sustainable Rivers Audit	
6.6 Marine and Tropical Sciences Research Facility	
6.7 Framework for the Assessment of River and Wetland Health	54

7 Riverine Wetlands
7.1 Natural Resource Management Resource Condition Indicators
7.2 Stream and Estuarine Assessment Program
7.3 Sustainable Rivers Audit
7.4 Lake Eyre Basin Rivers Assessment
7.5 Marine and Tropical Sciences Research Facility
7.6 Ecosystem Health Monitoring Program
7.7 Ambient Biological Monitoring and Assessment Program
7.8 Surface Water Ambient Network
7.9 AquaBAMM
7.10 Rapid Appraisal of Riparian Condition and Tropical Rapid Appraisal of Riparian Condition70
8 Estuarine and Marine Wetlands
8.1 Natural Resource Management (NRM) Resource Condition Indicators
8.2 Stream and Estuarine Assessment Program (SEAP)
8.3 EPA monitoring80
8.4 Ecosystem Health Monitoring Program
8.5 Marine and Tropical Sciences Research Facility
8.6 Coastal CRC90
8.7 Seagrass Watch
8.8 AquaBAMM94
9 Lacustrine and Palustrine Wetlands
9.1 Natural Resource Management (NRM) Resource Condition Indicators95
9.2 AquaBAMM101
9.3 CRCFE Dryland Refugia
9.4 Conceptual Models
10 Groundwater wetlands
11 Recommendations
12 References
Appendices
Appendix 1 Literature Search URLs
Appendix 2 Wetland classification systems

Attachment A: Wetland Indicators Workshop Report	164
1 Executive Summary	167
2 Introduction	168
2.1 Background information	168
2.2 The Wetland Indicators project	168
2.3 The workshop report	168
3 Background to the Experts' Workshop	169
4 Building the Indicator Framework	170
4.1 Considerations for defining indicators	170
4.1.1 Classification into wetlands types and sub-types	170
4.1.2 Indicators 'fit for purpose'	170
4.1.3 Spatial scale	
4.1.4 Temporal scale	171
4.1.5 Practicality: Skill level and cost requirements	171
4.2 Wetland classification and building the indicators framework	172
4.3 Generic and specific indicators	172
5 The Indicator Framework	173
5.1 Wetland indicator identification framework	173
5.2 Wetland indicator considerations – a worked example	174
6 Lacustrine Wetlands	175
6.1 Lacustrine conceptual model	175
6.2 Lacustrine sub-type conceptual models	
6.2.1 Coastal dune lakes eg. Blue Lake, Stradbroke Island (window lake)	179
6.2.2 Terminal depression lakes	179
6.2.3 Depression lakes (inland, non-arid)	180
6.2.4 Artificial lakese.g. Water supply dam	181
6.2.5 Arid-zone saltwater river-fed lakes	181
6.2.6 Inland salt lakes	182
7 Palustrine Wetlands	182
7.1 Palustrine conceptual models	182
7.2 Palustrine sub-type conceptual models	186
7.2.1 Coastal forest swamps e.g. Melaleuca, Casuarina	186
7.2.2 Coastal grass-sedge swampse.g. Bulkuru sedge	187
7.2.4 Artificial (bore drains)	
7.2.5 Natural groundwater springs	188
7.2.6 Herbs and forbs	189
7.2.7 Freshwater meadows	189

8 Groundwater	190
9 Other Key Discussion Points	191
9.1 Characterising wetlands	191
9.1.1 Reference condition	191
9.1.2 Value judgements – setting environmental values for management	191
9.2 Risk management approaches	191
9.3 Remote methods or ground testing – when and why?	191
9.4 Extent of the wetlands	
9.5 Users' needs and capabilities	192
10 Summary	192
11 Way Forward	19 3
Attachment List of Figures	
Figure 1. Indicator specification.	172
Figure 2. Indicator framework	173
Figure 3. Worked example of applying the matrix for a set indicator over a range of purposes	174
Figure 4. Lacustrine wetland (wet phase) conceptual model	177
Figure 5. Lacustrine wetland (dry phase) conceptual model	178
Figure 6. Palustrine wetland (wet phase) conceptual model	184
Figure 7. Palustrine wetland (dry phase) conceptual model	185
Attachment List of Appendices	
Appendix A: Workshop Program – June 8 & 9, 2006	194
Appendix B: Participant List	195
Appendix C: Presentations	197
Appendix D: Workshop Groups	212
Appendix E: Palustrine/Lacustrine Definitions	214
Appendix F: Lacustrine Conceptual Models	216
Appendix F: Palustrine Conceptual Models	222

List of figures

Figure 1.	The Climate Classification of Australia map (Bureau of Meteorology)	46
Figure 2.	A framework for selecting wetland indicators (Maher et al. 2006).	50
Figure 3.	Pressure-Stressor-Response (PSR) framework illustrating how human activities modify the prevailing biophysical conditions generated by natural drivers to elicit ecosystem responses (Marshall et al. 2006b)	51
Figure 4.	EPA's Water Quality Management Framework	52
Figure 5.	Freshwater Biogeograhic Provinces of Queensland. The provinces were identified by analysis of macroinvertebrate data and tested using fish data	65
Figure 6.	Relationship between the Australian Water Resources 2005 – Framework for the Assessment of River and Wetland Health project and the National Wetland Indicators project	96
Figure 7.	Lacustrine wetland (wet phase) conceptual model.	112
Figure 8.	Lacustrine wetland (dry phase) conceptual model.	113
Figure 9.	Coastal dune lake (lacustrine) conceptual model.	115
Figure 10.	Terminal depression lakes (lacustrine) conceptual model.	117
Figure 11.	Inland non-arid lakes (lacustrine) conceptual model	120
Figure 12.	Artificial lakes (lacustrine) conceptual model	122
Figure 13.	Arid zone lakes (lacustrine) conceptual model	124
Figure 14.	Inland salt lakes (lacustrine) conceptual model	127
Figure 15.	Palustrine wetland (wet phase) conceptual model	130
Figure 16.	Palustrine wetland (dry phase) conceptual model	131
Figure 17.	Coastal forest swamp (palustrine) conceptual model	134
Figure 18.	Coastal grass-sedge swamp (palustrine) conceptual model	136
Figure 19.	Inland arid zone swamp (palustrine) conceptual model.	139
Figure 20.	Artificial swamps (bore drain) (palustrine) conceptual model.	141
Figure 21.	Natural groundwater (palustrine) conceptual model.	143
Figure 22.	Freshwater meadow/herbs and forbs (palustrine) conceptual model	145
Figure 23.	Characteristics of main aquifer types (McNeil & Clarke 2007).	146

List of tables

Table 1.	National Resource Condition Matters for Target.	. 7
Table 2.	Recommended indicators for wetland Matters for Target.	. 8
Table 3.	AusRivAS indicators.	. (
Table 4.	Themes and indicators currently in use and being developed for the Sustainable Rivers Audit	11
Table 5.	Sub-indices and variables identified for the 2004 benchmark Victorian Index of Stream Condition (DSE 2005a).	12
Table 6.	Sub-indices and measures for the Victorian Index of Wetland Condition (DSE 2005b)	13
Table 7.	Indicators proposed by Spencer et al. (1998) to monitor the condition of floodplain wetlands of the Murray-Darling Basin	14
Table 8.	Indices and measures used by the WetlandCare Wetland Assessment Technique	15
Table 9.	Indicators and measures used in the Queensland Freshwater Ecosystem Health Monitoring Program.	.1
Table 10.	Variables measured in the Dryland Refugia project (Marshall et al. 2006a)	17
Table 11.	RARC sub-indices and indicators.	2(
Table 12.	TRARC sub-indices and indicators.	21
Table 13.	AquaBAMM criteria and indicators for riverine and non-riverine wetlands.	22
Table 14.	Catchment, reach and geomorphic unit characteristics measured in the Geomorphic River Styles method. After Brierley et al. (1996).	23
Table 15.	ANZECC core environmental indicators, Commonwealth State of the Environment 2006, and Queensland State of the Environment 2003 wetland indicators.	26
Table 16.	Indicator headings and indicators identified for the floodplains and wetlands of the Murray-Darling Basin (Baldwin et al. 2005).	39
Table 17.	Wetland classification systems.	42
Table 18.	Wetland Description Tool layers to assist in classifying wetlands in Queensland	44
Table 19.	Criteria for selecting indicators.	48
Table 20.	Riverine NRM resource condition indicators	55
Table 21.	SEAP Indicators and measures identified for collection in the Central province of Queensland	57
Table 22.	Themes, indicators and measures currently in use and being developed for the	5.8

Table 23.	3. Suggested themes, indicators and measures for detecting change in condition of different regions of Lake Eyre Basin	
Table 24.	Biophysical indicators identified and tested against natural and disturbance gradients in the wet tropics for MTSRF.	63
Table 25.	Ecosystem Health Monitoring Program freshwater indicators and measures	64
Table 26.	AquaBAMM criteria, indicators and measures for riverine wetlands	66
Table 27.	RARC sub-indices and indicators.	70
Table 28.	TRARC sub-indices, indicators and measures.	71
Table 29.	Current recommended indicators for Estuarine, Coastal and Marine Matter for Target.	72
Table 30.	Proposed indicators for Estuarine, Coastal and Marine Matter for Target, and measures currently undergoing trials in Queensland (R. Thorman pers.comm.; Scheltinga & Moss in prep.a)	74
Table 31.	Proposed SEAP stressors (and direct pressures on the system) and indicators for each phase of the models (Scheltinga & Moss in prep.b)	76
Table 32.	Water quality indicators and measures collected by the EPA in rivers, estuaries and coastal areas of eastern Queensland	80
Table 33.	Indicators and measures used in the estuarine/marine component of the EHMP	81
Table 34.	Estuarine indicators proposed for investigation in the MTSRF project: Marine and estuarine indicators and thresholds of concern.	82
Table 35.	Potential water quality indicators for estuaries and inshore coral reefs of the Great Barrier Reef	83
Table 36.	Potential indicators for determining coral reef health in the Great Barrier Reef (Sweatman 2007)	84
Table 37.	Key indicators identified by the Mesoamerican Indicator Framework for assessing the health of Central American reefs.	86
Table 38.	Proposed categories of tidal wetland change and indicators for assessing coastal and estuarine habitat (from Duke et al. 2003, Schaffelke et al. 2005).	90
Table 39.	Keys to assist identification of types of change in tidal wetland habitats (Duke et al. 2003)	92
Table 40.	Measures collected by community groups in Seagrass-Watch (McKenzie et al. 2003)	94
Table 41.	Current recommended indicators for wetland (lacustrine and palustrine) Matter for Target	95
Table 42.	Proposed wetland NRM resource condition indicators.	97
Table 43.	Proposed AquaBAMM criteria, indicators and measures for freshwater non-riverine wetlands 10	01
Table 44.	Physical variables measured in the Dryland Refugia project (Marshall et al. 2006a)	05
Table 45.	Lacustrine wetlands conceptual model10	07

Table 46.	Conceptual model for coastal dune lakes
Table 47.	Conceptual model for terminal depression lakes
Table 48.	Conceptual model for depression lakes (inland, non-arid).
Table 49.	Conceptual model for artificial lakes
Table 50.	Conceptual model for arid-zone saltwater river-fed lakes
Table 51.	Conceptual model for inland salt lakes
Table 52.	Palustrine wetlands conceptual model
Table 53.	Conceptual model for coastal forest swamps
Table 54.	Conceptual model for coastal grass-sedge swamps
Table 55.	Conceptual model for inland arid-zone swamps
Table 56.	Conceptual model for artificial swamps (bore drains)
Table 57.	Conceptual model for natural groundwater springs
Table 58.	Conceptual model for freshwater meadows/herbs and forbs
Table 59.	Water quality indicators for aquifer type (McNeil & Clarke 2007)
Table 60.	Conceptual model for underground wetlands
	f appendices
Appendix	1 Literature Search URLs
	2 Wetland classification systems
	Ramsar Classification System for Wetland Type
2.7	Torrectory of important wentands in Australia
Attac	hments
Attachmen	t A: Wetland Indicators Workshop Report164

Abbreviations and Acronyms

ABMAP Ambient Biological Monitoring and Assessment Program

AchE Acetyl Cholinesterase

AIMS Australian Institute of Marine Science

ANZECC Australian and New Zealand Environment and Conservation Council

APFD Annual Proportion of Flow Deviation

AquaBAMM Aquatic Biodiversity Assessment and Mapping Method

ARI Annual Return Interval

ASFB Australian Society for Fish Biology

ASRIS Australian Soil Resource Information System

AusRivAS Australian River Assessment System

AUSWAMP Australian Wetlands Assessment and Monitoring Program

AWR Australian Water Resources

BOD5 Biological Oxygen Demand over 5 days
CAMBA China-Australia Migratory Bird Agreement

CBD Convention on Biological Diversity

CFEV Conservation of Freshwater Ecosystem Values

CMA Catchment Management Authorities

COP9 9th Conference of the Parties of the Ramsar Convention

COTS Crown of Thorns Starfish
CRC Cooperative Research Centre

CRCFE Cooperative Research Centre for Freshwater Ecology

DIWA Directory of Important Wetlands of Australia

DOC Dissolved Organic C
DON Dissolved Organic N

DPI&F Department of Primary Industries and Fisheries

DSE Victorian Department of Sustainability and Environment

EAASSN East Asian-Australasian Shorebird Site Network

EC Electrical Conductivity

ECM Estuarine, Coastal and Marine

EHMP Ecosystem Health Monitoring Program
EPA Environmental Protection Agency

EPBCAct Environment Protection and Biodiversity Conservation Act 1999

EPT Ephemerophera (mayfly), Plecophera (stonefly), Trichophera (caddisfly)

EROD Ethoxyresorufin O-deethylase

EVs Environmental Values

FARWH Framework for the Assessment of River and Wetland Health

FMS Farm Management System

FORAM Foraminifera Index
GAB Great Artesian Basin

GAR Geomorphic Assessment Rivers

GBR Great Barrier Reef

GBRMPA Great Barrier Reef Marine Park Authority
GDE Groundwater Dependent Ecosystems

GPP Gross Primary Production
HAT High Astronomical Tide
HGM Hydrogeomorphic method

ICAG Intergovernmental Coastal Advisory Group

IPAM Imaging PAM = Imaging Pulse Amplitude Modulated fluorometry

ISC Index of Stream Condition
IWC Index of Wetland Condition

JAMBA Japan-Australia Migratory Bird Agreement

LAT Low Astronomical Tide

LEB Lake Eyre Basin

M&E Monitoring and EvaluationMAR Meso American Reef ProgramMDBC Murray Darling Basin CommissionMEA Millennium Ecosystem Assessment

MEWG Monitoring and Evaluation Working Group

MFT Matter for Target

MHWS Mean High Water Springs

MTSRF Marine and Tropical Sciences Research Facility

N Nitrogen

NAP National Action Plan for Salinity and Water Quality

NCAct Nature Conservation Act (Qld) NGO Non-government Organisation

NLWRA National Land and Water Resources Audit

NM&EF National Natural Resource Management Monitoring & Evaluation Framework

NRHP National River Health Program NRM Natural Resource Management

NRW Natural Resources and Water (Queensland State Agency)

NWC National Water CommissionNWI National Water Initiative

P Phosphorus

PAM Pulse Amplitude Modulated fluorometry

PVR Pressure-Vector-Response Model

QWJGT Queensland Wetlands Joint Government Taskforce

QWP Queensland Wetlands Programme

R Respiration

RARC Rapid Appraisal of Riparian Condition

RE Regional ecosystems
RE Regional Ecosystems

RivPACS River Invertebrate Prediction and Classification System

SAR Sodium Adsorption Ratio

SEAP Stream and Estuarine Assessment Program

SIGNAL Stream Invertebrate Grade Number – Average Level
SLATS Statewide Landcover and Trees Study (NRW database)

SoE State of the Environment Reporting

SOR State of the Rivers

SRA Sustainable Rivers Audit STP Sewage Treatment Plant

SWAMPS Swan Wetlands Aquatic Macroinvertebrate Pollution Score

TDS Total Dissolved Salts

TRARC Tropical Rapid Appraisal of Riparian Condition
TUMRA Traditional Use of Marine Resources Agreement

UNESCO United Nations Educational, Scientific and Cultural Organization

USEPA United States Environmental Protection Agency

WQ Water Quality

WQO Water Quality Objectives
WWF World Wildlife Fund

Executive Summary

Executive Summary

Wetlands are an important part of the natural landscape, providing provisional (food and water), regulatory (flood mitigation, safeguard against droughts), supporting (soil formation, nutrient cycling), and cultural (recreational, spiritual) services. In recent years, the design of wetland monitoring programs has become more robust with a greater emphasis on the purpose of the program and an understanding of the functions, drivers, processes and pressures operating in the wetland.

Rivers and marine-estuarine systems have been monitored and assessed in Queensland for many years but lacustrine and palustrine systems are not currently monitored under any broad, consistent program. NRM regional bodies are beginning to target wetlands within the scope of management action targets and resource condition targets, but they require direction and support to do so. Research bodies (universities, state agencies, industry) target specific systems or regions and ask precise questions, but do not generally address condition and trend issues that would be asked by State agencies and NRM groups.

The Queensland Wetlands Programme

The Queensland Wetlands Programme was set up 'to support projects and programs that will result in long term benefits to the sustainable use, management, conservation and protection of the Queensland wetlands'. It supports priority projects for development of tools that assist in the management of wetlands, and regional delivery projects that utilise the tools developed.

Queensland has the widest range of wetland types in Australia, as identified by the *Directory of Important Wetlands of Australia* (DIWA) (Environment Australia 2001), many of which are not found in other parts of Australia. Several broad wetland categories are recognised under the Programme (marine, estuarine, riverine, palustrine, lacustrine, artificial and subterranean), all of which are consistent with the classifications used by Ramsar, DIWA, and the recently proposed Australian Wetlands Inventory.

The Wetland Indicators Scoping Study

This project's aim is to review and develop indicators for assessing extent, distribution and condition of wetlands. The identification of indicators will inform both the Wetlands Inventory project, which forms the basis of the wider Wetlands Information System for the storage, maintenance, updating and delivery of wetlands information to multiple stakeholders, and the baseline resource condition assessment which was recommended by the Programme's MER Strategy.

Major outputs of this project include an 'expert' workshop to 'determine appropriate indicators and methodologies', a literature review of indicators of condition, methods used, and programs using these indicators, a wetland classification system for Queensland, and conceptual models for Queensland wetlands.

Executive summary

Wetland Classification

In order to report on the extent and distribution of wetlands, it is necessary to have an appreciation of wetland types. There are many wetland classification systems in use throughout Australia, all of which will need to translate to the DIWA wetland types in order to report nationally. This project proposed a Wetland Description Tool to assist in this process. The Tool has attributes which address characteristics of wetlands at increasingly smaller scales (continental, ecosystem, landscape, and local). Each category has specific layers to identify different features of wetlands that have traditionally been used in classification systems e.g. geographic location, climate, water sources, and dominant vegetation. Each layer identifies attributes that can be sourced using techniques such as remote sensing and data trawling. The layers and their attributes were selected so that when other classification systems are translated, there is an appropriate category to match the wetland type. A latter phase of this project has been to use and test the Wetland Description Tool using wetland types identified through the literature

Monitoring Framework

The workshop outcomes included a Monitoring Framework which considers indicator criteria, purpose of the program, temporal and spatial scales, skill levels required, and economic feasibility. Identification of wetland descriptors and subsequent subtypes direct the development of conceptual models and identification of key features of the wetland including drivers, pressures, and impacts that are important to the functioning of the wetland. Wetland sub-types that emerged through the workshop process were a mixture of palustrine and lacustrine wetlands identified by geographic location, vegetation, and geomorphology. Discussions following the workshop determined that the principles of the monitoring framework are evident in other wetland programs in Queensland.

Current programs in Queensland

Current programs in Queensland wetlands are investigated in detail with indicators and measures provided. Riverine programs include the NRM resource condition indicators, the Stream and Estuarine Assessment Program, the Sustainable Rivers Audit, the Lake Eyre Basin Rivers Assessment, the Marine and Tropical Sciences Research Facility Program, the Freshwater Ecosystem Health Monitoring Program, the Ambient Biological Monitoring and Assessment Program, the Surface Water Ambient Network, AquaBAMM (Aquatic Biodiversity Assessment and Mapping Method), the Rapid Appraisal of Riparian Condition (RARC), and the Tropical Rapid Appraisal of Riparian Condition (TRARC).

Estuarine and marine programs include the NRM resource condition indicators, the Stream and Estuarine Assessment Program, EPA monitoring, the Ecosystem Health Monitoring Program, the Marine and Tropical Sciences Research Facility Program, the Coastal CRC products, the Seagrass-Watch program, and AquaBAMM.

Lacustrine and palustrine wetlands programs include the NRM resource condition indicators and the proposed indicators determined by the National Matters for Target wetland indicators review, AquaBAMM, the CRCFE Dryland Refugia project, and the conceptual models developed at the workshop.

Groundwater programs in Queensland were discussed and a conceptual model developed at the workshop presented.

Recommendations

One of the major outcomes of this project was to be a set of recommendations to inform the national review of the Matters for Target wetland indicators. As the national project is nearing completion at the same time as this project, that outcome has become somewhat obsolete. In its stead, the knowledge and information that has been gained from this project has been used to inform the national indicators project, including:

- The literature search was modified for use in the national workshop background report and incorporated into the final report, and
- The wetland classification work provided the basis for the 'Wetland Description Tool' which was delivered to the jurisdictional workshops for comment and modification.

The conceptual models that were developed in the Wetland Indicators workshop were selected intuitively, rather than by any methodical selection process. Part of the reason for this was the absence of any agreed classification system for wetlands in Queensland. Both the National Wetland Indicators project and this project see a need to develop conceptual models for all wetland types. As different pressures and stressors operate in different wetland types, this will provide a basis for understanding different wetlands and, therefore, the selection of appropriate indicators for monitoring condition. Models have been developed using pressure, stressor, response models for estuarine systems (OzEstuaries and SEAP) and are under development for bioprovincial riverine systems in Queensland (SEAP). This project recommends that the lacustrine and palustrine conceptual models be reviewed and redeveloped using the recommended classification system.

In developing the monitoring framework, one of the many points stressed was that alternative methods should be developed for application to all skill levels. This would then engage all stakeholders from community level, with relatively limited capabilities in more complex indicators, researchers, and all levels of government. This may be possible for some indicators, but it quickly became apparent that, for other indicators, this will not be possible. There are indicators that community groups or NRM regional bodies will not have the fiscal or physical resources

to monitor e.g. remote sensing for both extent and distribution, and condition. And there are some indicators that require products such as remote sensing layers that are beyond the scope of State agency purchasing power, but may be available at a national level. This project recommends that all levels of government, researchers and regional/community groups liaise closely to enhance wetland extent, distribution and condition monitoring e.g. common remote sensing layers be provided to State agencies for mapping and condition monitoring which is provided to NRM regional bodies for use in their regions; relevant State agency monitoring information be provided to NRM bodies.

This report has presented detailed information on indicators that are in use or are proposed for assessment or monitoring. It has become apparent that the selection of indicators needs to be a purpose driven exercise, and to prescribe a set of indicators in this document for monitoring could invite failure in the program to deliver accurate assessments. It is recommended that the information provided here be a starting point for selecting indicators, that conceptual models of the system under investigation be developed, and appropriate indicators be selected on the basis of purpose, scale, cost, and skill.

1. Introduction

Wetlands have been closely aligned with the success of human civilisations, providing food and water resources, ecosystem services and aesthetic values. Human activities in the past two centuries encroached on wetlands, turning them into agricultural land, using them as waste depositories, and stripping them of their natural resources (Mitsch & Gosselink 2000; MEA 2005). In recent years, the value of wetlands as an integral part of the landscape needing protection and management has been recognised, prompting governments to reassess how they are managed to maintain these vital functions.

Successful wetland management relies upon knowledge of the ecological value of wetlands, and good monitoring and assessment, which in turn is based upon a firm understanding of the functions, drivers, processes and pressures operating in the wetland, catchment and region (Finlayson et al. 2005). Aquatic scientists have worked hard to develop management methods that are widely applicable yet sensitive to human impacts. Part of this process has been to identify indicators of health or condition that are appropriate for the purpose of the study and reflect what is happening in the wetland. They must be transparent, testable and scientifically sound and have the ability to adequately reflect the complexity of a system in management terms (UNESCO 2003).

In recent years, the way in which wetland monitoring and assessment is approached has developed to the point of designing robust programs that consider the ecological value of wetlands in conjunction with relevant drivers, pressures, and stressors. In conjunction with this improved approach to identifying appropriate indicators, the wetland monitoring community has expanded from being the enclave of research scientists to include NRM agencies and community groups. With this came the need to provide direction for non-specialists in selecting appropriate indicators and methods to monitor wetlands.

1.1 Wetlands in Queensland

Wetland monitoring in Queensland has been, to date, confined within systems. Rivers and marine-estuarine systems have been monitored and assessed for many years at both broad and specific scales by State and Local Government agencies, science bodies (universities, CSIRO, etc), regional bodies, and community groups. Lacustrine and palustrine systems are not currently monitored under any broad, consistent program. There are no State-sponsored state-wide monitoring programs for lacustrine and palustrine wetlands. NRM regional bodies are beginning to target wetlands within the scope of management action targets and resource condition targets, but they require a robust framework to do so. Research bodies (universities, state agencies, industry) target specific systems or regions and ask specific questions, but do not generally address condition and trend questions.

The Bilateral Agreement between the Australian Government and the State of Queensland, signed in 2004, prompted the establishment of the Queensland Wetlands Programme the goal of which is 'to support projects and programs that will result in long term benefits to the sustainable use, management, conservation and protection of the Queensland wetlands'. The Programme administers two subprogrammes: the Great Barrier Reef Coastal Wetlands Protection Plan, to develop and implement measures for the long-term conservation and management of wetlands in the Great Barrier Reef catchment as per the strategies in the 'Reef Water Quality Protection Plan', and the Natural Heritage Trust Wetlands Programme, to develop and implement measures to support Queensland in the conservation and management of wetlands as outlined in the Bilateral Agreement. The first major deliverable from the Programme is priority projects to assist in the management of wetlands e.g. mapping and inventory, management profiles, and information review and gap analysis, and the second is to further the prospects for wetland conservation and management through regional delivery projects utilising the tools developed under the first deliverable (Conrick 2005).

This project is one of a suite of projects under the Programme that is developing tools which will enable wetlands to be managed well in Queensland. This

project's aim is to review and develop indicators for assessing extent, distribution and condition of wetlands. Without appropriate extent and resource condition indicators, and baseline information on wetlands in Queensland, it will be difficult to establish whether the goal is being achieved.

For any meaningful monitoring framework it is important to understand the scope and specifics of wetlands in Queensland. Queensland has the widest range of wetland types in Australia, as identified by the *Directory of Important Wetlands of Australia* (DIWA) (Environment Australia 2001), many of which are not found in other parts of Australia. Several broad wetland categories are recognised under the Programme (marine, estuarine, riverine, palustrine, lacustrine, artificial and subterranean), all of which are consistent with the classifications used by Ramsar, DIWA, and the recently proposed Australian Wetlands Inventory.

Under the National Natural Resource Management (NRM) Monitoring and Evaluation Framework (NM&EF), the Matters for Target list the indicator headings and indicators for reporting by NRM Bodies throughout Australia; they are also linked to both state and national State of the Environment reporting. Wetlands are addressed under two Matters for Target (Inland aquatic ecosystems integrity and Estuarine, coastal and marine habitats integrity), both of which are currently undergoing review. In Queensland, the indicators have yet to be fully tested at a scale that supports resource planning and assessment. In addition, there is general acceptance that the indicators for wetland extent and condition are in need of revision (NLWRA 2005). This anomaly is being addressed by both this project, the Wetland Indicators Scoping Study, and by the national review of wetland indicators (lacustrine and palustrine) (Conrick et al. 2007).

1.2 Wetland IndicatorsScoping Study

Under Clause 24 of the Bilateral Agreement i.e. to develop and implement new statutory planning and development assessment arrangements to protect wetlands, the Queensland Wetlands Programme is funding the development of several tools to assist in the successful management, conservation and restoration of Queensland wetlands.

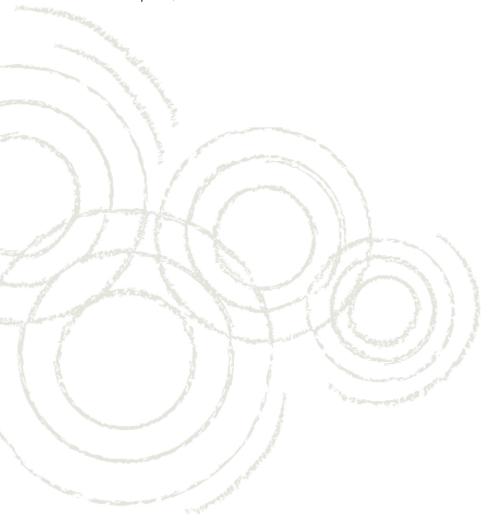
One of these projects, the Wetlands Inventory Database, is being developed to provide a data storage mechanism for wetlands information. It forms the basis of the wider Wetlands Information System for the storage, maintenance, updating and delivery of wetlands information to multiple stakeholders. It will rely upon appropriate wetland indicators being established so that inventory fields can be identified which will allow the database to act as an appropriate mechanism for data capture and storage of monitoring information.

A recommendation from the Queensland Wetlands Programme Monitoring, Evaluation and Reporting Strategy (Conrick 2005) was to establish a baseline resource condition for Queensland wetlands by the end of the Programme (2008). In order to do this task, appropriate indicators needed to be identified, tested and agreed upon. The identification of indicators to inform both the Wetlands Inventory project and the baseline resource condition is one of the tasks of the Wetland Indicators Scoping Study.

Monitoring and Evaluation trials in Queensland funded by the NLWRA identified that wetland indicators were not considered by regional bodies when developing their Plans, as they were seen to be 'impractical and resource intensive', there were no national standards for monitoring, and the current NM&EF wetland indicators were based on work from Western Australia and therefore not tested for Queensland (NLWRA 2005).

In order to reduce the uncertainty and risk of using inappropriate indicators associated with both the current wetland indicators and those under development, a framework for monitoring wetlands needs to be assessed, and indicators identified. Scoping appropriate indicators and methods provides a means by which current or new wetland planning arrangements can be monitored, and the efficacy of on-ground works assessed.

Introduction


1. Introduction

1.3 Project Objectives

The objectives of the Wetland Indicators Scoping Study project are to:

- review relevant national and international literature on wetland condition and extent indicators and methodology as they relate to monitoring;
- perform a scoping study to determine appropriate resource condition indicators and methodologies for wetland monitoring for different wetland types, commencing with the set of national indicators;
- identify existing monitoring programs and highlight areas where monitoring is deficient for Inventory Database requirements (temporal and spatial);

- identify resource condition parameters for inclusion in the Wetlands Inventory Database;
- identify criteria for resource condition monitoring as outlined in the Queensland Wetlands Programme Monitoring, Evaluation and Reporting Strategy;
- make recommendations for developing conceptual understandings of wetland types; and
- Consolidate links to other Queensland Wetlands Programme projects.

2. Methods

A major output of this project was an 'expert' workshop to 'determine appropriate indicators and methodologies'. In preparation for the workshop, a literature review of indicators of condition, methods used, and programs using these indicators was undertaken. The results of this review are in Section 3.

A 1½ day workshop to identify indicators and methodologies was run, attended by wetland experts from across Australia. The workshop concentrated on lacustrine, palustrine and groundwater wetlands in Queensland. It was acknowledged that other wetland types (riverine, marine and estuarine) are currently under investigation by other groups in Queensland, and there was little to be gained by addressing those wetlands in this forum. Information on riverine, estuarine and marine indicators and methodologies was gathered through direct one-one meetings between the project team and the proponents of those programs (Sections 7, 8, & 9).

The workshop was purposely designed so that deviations from the agenda could be tolerated in the interest of consensus on a framework for selecting indicators. This enabled issues that arose to be discussed, and the direction of the workshop to be fluid. The result was that, by the end of the workshop, a framework for identifying indicators (Section 6), and

a series of conceptual models had been developed (Sections 9.4). During the course of the workshop, some groups identified potential indicators for their particular wetland sub-type, but, in general, this was not an outcome of the workshop.

The minutes of the workshop were written into a report format and distributed for comment. The Workshop Report (Maher et al. 2006) is a direct record of the workshop (Attachment A), and any comment pertaining to issues related to the outcomes of the workshop, but not addressed at the workshop, have been included in the project report.

The final task of the project is to communicate the findings of the project to the relevant projects of the Queensland Wetlands Programme, the State agencies and regional bodies of Queensland.

Methods

The following literature search is a summary of programs, indicators and frameworks associated with wetland monitoring in Australia, as well as Australian reviews of wetland monitoring. Some of the programs are designed for one-off assessments e.g. AquaBAMM, some are research based, whilst others are the basis of monitoring programs e.g. SEAP. Relevant international literature is also summarised. Where possible web links are provided in the text. Appendix 1 lists all the URLs from the literature search. This literature search was originally produced for this project and was further developed for the National Wetland Indicators Review project by the NLWRA (Conrick et al. 2007). Throughout the course of both projects the search has been developed to cater for the needs of each project. Much of the information presented in this section will also be reproduced in the report to NLWRA.

3.1 National resource condition indicators

From 1997 to 2002, the National Land & Water Resources Audit (NLWRA) coordinated the development of national Matters for Target (MfT) indicator headings and associated indicators and methodologies as part of the National NRM M&E Framework (NM&EF) through Monitoring and Evaluation Working Groups (MEWGs). The full list of Matters for Target and Indicator Headings are in Table 1. Wetlands, as defined by DIWA, are addressed under two Matters for Target: 'Inland aquatic ecosystem integrity', and 'Estuarine, coastal and marine habitats integrity'.

These Matters for Target have intuitively divided wetlands into the groups described by Cowardin et al. (1979): marine, estuarine, riverine, lacustrine and palustrine. Marine and estuarine wetlands are addressed under the 'Estuarine, coastal and marine habitats integrity' MfT, whilst freshwater and inland saline wetlands are dealt with by the 'Inland aquatic ecosystems integrity' MfT. Riverine wetlands are considered under the 'River condition' indicator heading, and lacustrine and palustrine wetlands under the 'Wetland ecosystem extent and distribution' and 'Wetland ecosystem condition' headings. The indicators for these headings, which are all under review, are in Table 2. Methods are available online.

Recent work by the NLWRA and the Queensland Department of Natural Resources and Mines (now NRW) on monitoring and evaluation trials of NLWRA indicators at a regional scale for the National Action Plan for Salinity and Water Quality (NAP)/Natural Heritage Trust indicated '...that only 15% of the recommended indicators and their methodology for monitoring are likely to be followed as proposed in the two study regions and almost half of the recommended indicators have methodological issues and are not likely to be monitored using the recommended framework.' In fact, wetland indicators did not make it on to the indicator list for consideration because of their perceived problems (NLWRA 2005).

The need for appropriate and realistic indicators and methodologies for all Matters for Target has been recognised, initiating reviews of current indicators and recommending new sets for the NRM M&E Framework.

3.2 Current programs and indicators in Australia

Freshwater

Every State and Territory in Australia is currently undertaking monitoring of natural resource condition. Much of this work was initiated by the National River Health Program (NRHP) and the development of the AusRivAS models during the 1990s. It seeded the further development of wider-ranging indicators and the need to understand the systems that are under investigation. While the NRHP was directed towards rivers, there has not been a complementary development of monitoring in the lacustrine and palustrine wetland arena. At best, ad-hoc arrangements exist for monitoring these wetlands, and in many cases they are ignored because of the lack of suitable monitoring techniques.

The Australian River Assessment System (AusRivAS) uses rapid assessment techniques and predictive models to assess the ecological health of Australian rivers (Simpson *et al* 1997; Simpson and Norris 2000). It was developed under the NRHP by the Australian Government in response to a growing concern in Australia for maintaining ecological values, and is based on the British RIVPACS models (Wright 1993).

AusRivAS has two programs: Bioassessment, and Physical Assessment. These correspond respectively with rapid biological assessment protocols, and rapid geomorphic, physical and chemical assessment protocols. The indicators under each of these streams are in Table 3 (see page 9).

The most commonly used AusRivAS models predict the aquatic macroinvertebrate fauna expected to occur at a (reference) site in the absence of environmental stress, such as pollution or habitat degradation, to which the fauna collected at another (test) site can be compared. AusRivAS macroinvertebrate predictive models have been developed for each state and territory for the main habitat types found in Australian river systems, including riffle, edge, pool, and bed habitats.

AusRivAS is often used in conjunction with other macroinvertebrate indices to provide a more robust assessment of river health. The SIGNAL Index (Stream Invertebrate Grade Number – Average Level) is a simple scoring system of macroinvertebrate samples to assess water quality (Chessman 1995; 2003). Different macroinvertebrate taxa are known to display varying degrees of sensitivity to water pollution. Each taxon is allocated a grade of sensitivity to pollution, the grades are averaged for each sample and the index score plotted for interpretation. Other indices in use include the total taxa richness of a sample and EPT (or sensitive) taxa richness.

Table 1. National Resource Condition Matters for Target.

Resource Condition Matters for Targets	Indicator Headings
Land salinity	Area of land threatened by shallow or rising water tables
Soil condition	Soil condition
Native vegetation communities' integrity	Native vegetation extent and distribution
	Native vegetation condition
Inland aquatic ecosystems integrity	River condition
(rivers and other wetlands)	Wetland ecosystem extent and distribution
	Wetland ecosystem condition
Estuarine, coastal and marine habitats integrity	Estuarine, coastal and marine habitat extent and distribution
	Estuarine, coastal and marine habitat condition
Nutrients in aquatic environments	Nitrogen in aquatic environments
	Phosphorus in aquatic environments
Turbidity / suspended particulate matter in aquatic environments	Turbidity / suspended solids
Surface water salinity in freshwater aquatic environments	In-stream salinity
Significant native species and ecological communities	Selected significant native species and ecological communities extent and conservation status
Ecologically significant invasive species	Selected ecologically significant invasive species extent and impact

Table 2. Recommended indicators for wetland Matters for Target.

Indicator Heading	Recommended Indicators
River Condition (Indicator Status: For Advice)	For regionally significant reach based issues that is the subject of targets in regional plans, the indicators are:
	Benthic macroinvertebrate community assemblages (Indicator Status: For Advice)
	Fish community Assemblages (Indicator Status: For Advice)
	Benthic diatom community assemblages(Indicator Status: For Advice)
	Riparian vegetation community assemblages (Indicator Status: For Advice) District Control of the Cont
	Riverine physical structure and in-stream habitat (Indicator Status: For Advice) Motor quality (Indicator Status: For Advice)
	Water quality (Indicator Status: For Advice)Hydrology (Indicator Status: For Advice)
	If all or most of these indicators are measured, it may be possible to use
	monitoring data to develop an index of river condition
Wetland ecosystem extent and distribution	Extent of regionally significant wetlands (Indicator Status: Unclear)
Wetland ecosystem condition	Condition of regionally significant wetlands based on:
(Indicator Status: For Advice)	Colour (Indicator Status: For Advice)
	Dissolved oxygen and temperature (Indicator Status: For Advice)
	• Extent of inundation (Indicator Status: For Advice)
	Macroinvertebrate diversity and community composition (Indicator Status: For Advice)
	Macroinvertebrate index (Indicator Status: For Advice)
	Macroinvertebrate indicator species (Indicator Status: For Advice)
	Nutrients (Phosphorus and Nitrogen) (Indicator Status: For Advice)
	Transparency (Indicator Status: For Advice)
	Vegetation (Indicator Status: For Advice)
	Phytoplankton (Indicator Status: For Advice)
Estuarine, coastal and	Algal blooms (Indicator Status: For advice)
marine habitat extent and distribution	Animal disease/lesions (Indicator status: for advice)
(Indicator Status: For Advice)	Animal kills (Indicator Status: For advice)
(continued over page)	 Animal or plant species abundance (Indicator Status: For advice) Animals killed or injured by litter (entanglement, starvation, suffocation)
(continued over page)	Animals killed or injured by litter (entanglement, starvation, suffocation) (Indicator Status: For advice)
	Benthic microalgae biomass (in intertidal sand/mudflat communities) (Indicator Status: For advice)
	Biomass, or number per unit area, of epiphytes (in seagrass or mangrove communities) (Indicator Status: For advice)
	Biomass, or number per unit area, of macroalgae (in rocky shore, rocky reef or coral reef communities) (Indicator Status: For advice)
	•• Chlorophyll a (Indicator Status: For advice)
	Coral bleaching (Indicator Status: For advice)

Table 3. AusRivAS indicators.

Indicator Heading	Indicator
Bioassessment	Macroinvertebrates
	• Diatoms
Physical Assessment	Physical and Chemical Geoassessment

AUSWAMP and SWAMPS are two biological assessment methods that were developed for Western Australian lacustrine and palustrine wetlands on the back of the AusRivAS and SIGNAL methods developed for rivers (Chessman et al. 2002; Davis et al. 1999; 2001; 2006). Despite being regionally limited to SW Western Australia, they are two of the currently recommended national indicators for wetlands. Geographical limitations, as well as the obvious requirement of a fairly advanced skill level, have restricted the use of these indicators by regional NRM bodies.

The AUSWAMP (Australian Wetlands Assessment and Monitoring Program) project developed monitoring protocols and rapid assessment methods for determining wetland health to assist diagnosis of wetland stress and performance measures for management, rehabilitation and restoration programs. The project determined the usefulness of applying methods developed as part of the NRHP (AusRivAS) to the monitoring and assessment of Australian lacustrine and palustrine wetlands. The model predicts the invertebrate community that would be expected to occur at a site if it is in reference condition. A comparison of the invertebrates predicted to occur with the actual occurrence provides a measure of biological damage. The paper describing this method (Davis et al. 2006) also assessed qualitative indices of wetland condition:

- Hydrology (change from seasonal to permanent water regime),
- Enrichment (degree of nutrient enrichment),
- Contaminants (degree of contamination of sediments with pesticides and heavy metals),
- Introduced fish (presence of the mosquito fish (Gambusia),
- Fringing vegetation (%) of undisturbed remnant vegetation within 100 m of wetland edge
- Groundwater abstraction (location of bore fields and approximate extraction volumes = index of potential impact).

The SWAMPS (Swan Wetlands Aquatic Macroinvertebrate Pollution Score) index is a biotic index using macroinvertebrates which can be used to provide an assessment of the health of selected wetlands on the Swan Coastal Plain in Western Australia. It was developed using the objective

iterative method of Chessman et al. (1997) for macroinvertebrate families of rivers in eastern Australia (SIGNAL). This work may be widely applicable across Australia, but will require adjustment to reflect local taxa distributions.

The National Water Commission (NWC) is overseeing the implementation of the National Water Initiative (NWI), a comprehensive strategy to improve water management across the country. The NWI Agreement, which has been signed by the Commonwealth and all States and Territories, is Australia's blueprint for national water reform. It encompasses a range of water management issues and encourages the adoption of best-practice approaches. The overall objective of the NWI is to achieve a nationally compatible market, regulatory and planning based system of managing surface and groundwater resources for rural and urban use that optimises economic, social and environmental outcomes.

The project 'Australian Water Resources 2005 (AWR)' (originally called the Baseline Assessment of Water Resources) is one of several projects funded to improve the knowledge and understanding of Australia's water resources under the 'Raising National Water Standards Programme' of the National Water Initiative (NWI website, accessed 24.1.07). It is being developed in extensive consultation with partner governments, to allow for the future application of a robust national assessment that utilises existing work to the maximum extent possible. There are three components to the project:

- Water availability,
- Water quality/river and wetland health, and
- Water use.

Under the water quality/river and wetland health component, the AWR will '...utilise existing river health assessments and develop a national framework for river health assessment...'. The project, entitled 'Framework for Comparable Assessment of the Ecological Condition of Australian Rivers and Wetlands' (FARWH) (Norris et al. 2007), is being developed to provide assessments of river and wetland health that can be reported at a national scale from comparable state- and territory-based assessments. It is intended that FARWH will incorporate a range of river and wetland attributes indicative of key ecological processes which will be aggregated to provide an index. This information will

assist managers to 'assess and develop policies, decide on investments, evaluate program and policy performance, and direct resource management' (Norris et al. 2007).

FARWH is based on the premise that ecological integrity is the fundamental measure of river and wetland health and, although the ultimate measure of that integrity is the damage to the biota, other components of the ecosystem are just as important, and should be included in an assessment of ecosystem health. It recommends selecting indicators under six themes: catchment disturbance, physical form, hydrological disturbance, water quality and soils, fringing zone, and aquatic biota, although the selection of specific indicators is left to the discretion of the investigator. The appendix of the document provides methods for indicators that may be used under the six themes. Many of these were developed for the NLWRA 1997-2002 (specifically related to rivers), although more contemporary indicators developed for the Sustainable Rivers Audit, the Index of Stream Condition and other programs are also included. A referential approach will be used to assess each indicator and the resulting indices will be aggregated and integrated to generate scores which can be reported and compared at the state and/or national level.

Waterbird populations are currently monitored through aerial surveys and processes are underway to standardise these methods. The East Asian-Australasian Shorebird Site Network (EAASSN) is an international cooperative effort to conserve and protect the major wetlands utilised by migrating shorebirds. Managers of the sites are encouraged to establish a local advisory or liaison group and develop management plans.

The Sustainable Rivers Audit (SRA) uses scientific indicators of health to determine the current ecological condition and health of river valleys in the Murray-Darling Basin (MDBC 2004). It will provide a better insight into the variability of river health indicators throughout the Basin and over time, and better inform management of the Basin. Three indicator themes are currently being monitored (fish, macroinvertebrates and hydrology) and others are under development (vegetation and physical form) for implementation in the future (Table 4).

Table 4. Themes and indicators currently in use and being developed for the Sustainable Rivers Audit.

Theme Index	Indicator
Fish (channel)	Expected species
	Nativeness
	Diagnostic
Macroinvertebrates (channel)	
Hydrology (channel)	High Flow
(the indicators for this theme are those	Low and Zero Flow
recommended from the Hydrology Pilot SRA	Variability
Program)	Seasonality
	Flow volume
Vegetation (channel and floodplain)	This index is under development
Physical Form (channel and floodplain)	This index is under development

Whilst the current themes are targeting in-stream habitats, those under development will encompass wetlands on the floodplain as well as the channel. Information gained through the SRA monitoring of condition will assist in setting targets and developing strategies to improve the management of rivers, and the monitoring against those targets and strategies. The Audit will detect large scale change providing a standard framework across the Basin for comparing information.

In Tasmania, the Conservation of Freshwater Ecosystem Values (CFEV) project was initiated to identify where important freshwater values exist on Crown and private land, and to identify a full range of management tools to conserve those values. This information is stored in a database which acts as a planning and information tool for management purposes and includes the identification and conservation of values that exist within Tasmania's rivers and streams, wetlands, lakes, estuaries, saltmarshes, karst systems and groundwater dependent ecosystems.

Table 5. Sub-indices and variables identified for the 2004 benchmark Victorian Index of Stream Condition (DSE 2005a).

ISC sub-index	Measure
Hydrology	Low flows
	High flows
	Zero flows
	Seasonality
	Variability
Water quality	Total Phosphorus
	Turbidity
	Salinity (EC)
	• pH
Streamside zone	• Width
	Longitudinal continuity
	Understorey diversity
	Recruitment
	Large trees
	Tree canopy
	• Litter
	• Logs
	• Weeds
Physical form	Bank stability
	Large wood
	Fish passage
Aquatic life	AusRiVAS (habitat)
	SIGNAL (pollution)

Victoria has developed two indices of aquatic condition, the Index of Stream Condition (ISC) and the Index of Wetland Condition (IWC) to assist Catchment Management Authorities (CMAs) to set management objectives and measure the effectiveness of long term programs.

The ISC is an index of environmental condition integrating information on the major components of our river systems that are important from an ecological perspective (flow regime, water quality, geomorphology and biota of rivers). It provides an overall indication of changes in river condition and assesses the condition of homogenous river reaches to assist with the delivery of stream management programs in Victoria, in particular in priority setting, resource allocation, assessing management effectiveness and setting benchmarks (Ladson & White 1999). The sub-indices and variables were updated for the second benchmark ISC report in 2004 (Table 5) from those used in the initial report in 1999 (DSE 2005a).

The Index of Wetland Condition (IWC) is a rapid assessment technique which aims to differentiate natural from human-induced changes in condition (DSE 2005b). It applies to naturally occurring, v non-flowing wetlands which do not have a marine hydrological influence and, similarly to the ISC, takes the form of a hierarchical index with six sub-indices based on the characteristics that define wetlands: wetland catchment, physical form, hydrology, soils, water properties and biota. The sub-indices and measures are listed in Table 6. The IWC is currently undergoing trials in Victoria.

Table 6. Sub-indices and measures for the Victorian Index of Wetland Condition (DSE 2005b).

IWC sub-index	Measure
Wetland catchment	Percentage of land in different land use intensity classes adjacent to the wetland
	Average width of the buffer
	Percentage of wetland perimeter with a buffer
Physical form	Percentage reduction in wetland area
	Percentage of wetland where activities (excavation and landforming) have resulted in a change in bathymetry
Hydrology	Severity of activities that change the water regime
Water properties	Activities leading to an input of nutrients to the wetland
	Factors likely to lead to wetland salinisation:
	o input of saline water to the wetland
	o wetland occurs in a salinity risk area
Soils	Percentage and severity of wetland soil disturbance
Biota	Wetland vegetation quality assessment based on:
	o critical lifeforms
	o presence of weeds
	o indicators of altered processes
	o vegetation structure and health

A rapid assessment method to monitor the condition of floodplain wetlands in the Murray-Darling Basin was developed in the late 90s (Spencer at al 1998). It gave details of indicators to monitor soils, fringing vegetation, aquatic vegetation and water quality (Table 7). This report did not give rise to any major monitoring program, although it has been cited frequently in the literature (D. Baldwin pers. comm.).

WetlandCare Australia has developed an assessment manual which standardises and streamlines wetland assessment, allowing the formation of regional, and possibly national, comparative databases that can be used as part of a Decision Support System to prioritise wetland investment by regional bodies (Golus et al. 2006). The methods described use rapid assessment techniques to monitor wetland health based primarily upon vegetation characteristics (Table 8). It allows rapid identification of changes in wetland health and timely implementation of impact monitoring, and protection or restoration measures.

The Freshwater Ecosystem Health Monitoring Program (Freshwater EHMP) (SE Queensland) was established to provide an objective assessment of the health of waterways throughout the southeast region (Abal et al. 2005). The information collected is used to advise councils and land managers on areas of declining health, report on the effects of different land uses, and to evaluate the effectiveness of management actions aimed at improving and protecting aquatic ecosystems. Comprehensive indicators were developed that relate aquatic health to disturbance pressures in Southeast Queensland through themes of fish, invertebrates, physico-chemical, eco-processes and nutrients. (Table 9) (Smith & Storey 2000).

Table 7. Indicators proposed by Spencer et al. (1998) to monitor the condition of floodplain wetlands of the Murray-Darling Basin.

Indicator Heading	Indicator
Soil	Bank stability
	Pugging by livestock
	Soil organic content
Fringing vegetation	Width
	Continuity
	Height diversity
Aquatic vegetation	• Cover
	Spatial heterogeneity
	Attached algae
Water	Turbidity
	Conductivity
	Colour
	Algal bloom frequency

Table 8. Indices and measures used by the WetlandCare Wetland Assessment Technique

Wetland Type	Index	Indicators
All Wetlands	Connectivity	Proximity
		Area
		Roads
		Adjacent landuse
	Human Disturbance	,
	Acid Sulphate Soils	
Paperbark Wetlands	Paperbark condition	Vine growth
		• Galls
		Standing dead or dying trees
		Clusters of fallen trees
		Necrotic spots
	Wetland establishment	Girth circumference
		Depth of peat layer
Open Freshwater Wetlands	Fringing Vegetation	Width
		Diversity
		Species number
		Weed
	Bank condition	• Erosion
		Pugging
		Bank gradient
	Water quality	• pH
		Turbidity
		Electrical conductivity
		Nitrate
		Ammonium
		Phosphate
Estuarine Wetlands	Mangrove condition	Foliage cover
		Foliage health
		Community structure
	Saltmarsh condition	Ground cover
		Crab burrows
		Snail density
		Necrosis
		Mangrove & terrestrial, freshwater weed encroachment
	Tidal restriction & hydrology	Mapped changes
		Presence of structures affecting tide
		Vegetation indicators

Table 9. Indicators and measures used in the Queensland Freshwater Ecosystem Health Monitoring Program.

Indicator	Measure
Physical/chemical	• pH
	Conductivity
	Diel (24hr) range and maximum temperature
	Diel range and minimum dissolved oxygen
Nutrient cycling	Ratio of 15N to 14N stable isotope
	Algal bioassay
Ecosystem processes	Growth rate of algae
	• Ration of 13C to 12C stable isotopes
	• Respiration (R24)
	Gross Primary Production (GPP)
Aquatic macroinvertebrates	Number of macroinvertebrate taxa
	EPT richness (number of stonefly, mayfly and caddisfly families)
	SIGNAL score
Fish	Proportion of native species expected
	Ratio of observed to expected species
	Proportion of alien fish

The Dryland Refugia project (2001-2005), run by the now concluded Cooperative Research Centre for Freshwater Ecology (CRCFE), sampled three Queensland river systems (Cooper Creek, Warrego River and the Border Rivers) to determine the relationships between biodiversity and the physical attributes of individual waterholes as well as the spatial and temporal pattern of connectivity in the landscape. The biophysical processes that sustained biodiversity and ecosystem health in dryland river refugia were also identified. The principal outcomes from the project related to understanding how changes in hydrology and land management influence the biological and physical processes and integrity of refugia. This information was intended to be usable in other arid and semi-arid regions of Australia. Many variables covering geomorphology, hydrology, and water quality were collected during the course of the project (Table 10) (Marshall et al 2006a). In addition, fish, macroinvertebrates, macrophytes, algae, and biophysical processes were also sampled.

The Narran Lakes system has been under investigation since 2003, initially by the CRC Freshwater Ecology, and now eWater. The project is investigating ecosystems responses to flow variability in the Narran Lakes floodplain-wetland complex. A series of conceptual models of the key ecological functioning of Narran Lakes has enabled the identification of knowledge gaps and is working towards increasing the understanding of terminal floodplain-wetlands in the semi-arid region of Australia. This knowledge will allow the response of these types of systems to disturbances, both natural and those induced by continued water resource and floodplain development, to be predicted.

^{*} only those WQ parameters used in the analyses are listed

Table 10. Variables measured in the Dryland Refugia project (Marshall et al. 2006a).

Variable class	Variables
Floodplain morphology	 Total flood plain width Effective flood plain width Flood plain setting Bifurcation ratio Number of channels Channel distance to the nearest waterhole Straight line distance to the nearest waterhole
Waterhole morphology	 Surface Area Perimeter Length Width Fetch length Circularity Elongation ratio Length to width ratio Width to depth ratio Hydraulic radius Wetted perimeter Shape index Depth of cross-section Volume
Within waterhole morphology	 Mid-channel bars Backwater Offtake channels Bench 0 – 1/3 Bench 1/3 – 2/3 Bench 2/3 – 3/3 Side bars Miscellaneous bars Anabranches Bed and bank complexity Eroding banks Snag density Scour holes Boulders Fringing vegetation Overhanging vegetation

continued on next page

Table 10 continued from previous page

Variable class	Variables
Sample habitat	% deep (not sampleable)
	• % edge
	% silt/clay pool
	% sandy pool
	% rocky pool
	Edge algae density
	Edge detritus density
	Edge macrophyte density
	• Rocks
	Mean wetted width
Water quality*	Conductivity
	Turbidity
	Total nitrogen
	Ratio total N: total P
	Dissolved oxygen 24 hr minimum
	Water temperature 24 hr maximum
	Silicate
	Sulphate
Hydrology	Time since discharge >1500 ML/day
	Time since discharge >1000 ML/day
	Time since discharge >500 ML/day
	Time since discharge >50 ML/day
	Total antecedent discharge in past 90 days
	Total antecedent discharge in past 60 days
	Total antecedent discharge in past 30 days
	Duration of most recent high flow event > 500 ML/day

MANAGE AND STATE OF THE PARTY O

The State of the Rivers projects provide 'snapshots' of the ecological and physical condition of streams (Anderson 1993). It is currently undertaken in Queensland by the Department of Natural Resources and Water. The program aims to provide an assessment of the physical and environmental condition of streams at the time of survey, relative to their presumed natural or original condition. The approach focuses on the attributes recognised as being important to instream and riparian fauna and flora, and is designed to be independent of flow conditions and water levels at the time of survey. Intensive surveys are carried out on a catchment by catchment basis and the data is then analysed to determine individual and overall condition ratings.

Indices measured are:

- · Reach environs condition
- Bank condition
- Bed and bar condition
- Channel habitat diversity
- Riparian vegetation condition
- Aquatic vegetation condition
- Aquatic habitat condition
- Scenic and recreational value
- Conservation value.

The Rapid Appraisal of Riparian Condition (RARC) and the Tropical Rapid Appraisal of Riparian Condition (TRARC) are methods that have been developed to assess the health of riverine riparian zones (Jansen et al 2005; Dixon et al. 2006). Both methods derive an index of condition using indicators to reflect functional aspects of the physical, community and landscape features of the riparian zone. The resulting indices will inform land managers on the condition of their riparian zones and assist in their management. Whilst the indices are not designed nor recommended for lacustrine and palustrine wetlands, some of the indicators may be useful in assessing those wetlands. The sub-indices and indicators for both assessments are listed in Tables 11 and 12.

AquaBAMM is a decision support method developed by the Queensland EPA that utilises existing information and expert input to assess conservation values in aquatic ecosystems. To date the method has only been developed and trialled fully in riverine wetlands, although the program is currently being applied to non-riverine wetlands (Clayton et al. 2006). Future work will extend the program to estuarine and marine systems as well as rapid assessment of freshwater systems. Whilst not strictly a method for determining resource condition, rather a method for determining conservation values of sites and catchments, criteria, indicators and measures are identified in the method. Table 13 lists the default riverine and non-riverine indicators. Up to 14 measures are identified under each indicator. Data for all of the diagnostic measures are sourced from available databases.

The Riverstyles® method is a geomorphic system to classify rivers, based on the direct link between vegetative and geomorphic processes, providing an assessment of habitat availability along river courses, and hence indirect linkage to river ecology (Brierley et al. 2002; 2005). It is also the basis of the Physical Assessment component of AusRivAS. Indicators are listed in Table 14.

Waterwatch is a nation-wide program for community and landholder/managers to be actively involved in monitoring wetland condition. Modified tests or methods are used to conduct biological, physicochemical and habitat assessments to build a picture of the health of waterways and catchments. The Waterwatch Australia national technical manual is available from the web.

In addition to the programs summarised above, each state/territory is involved in monitoring in lacustrine and palustrine wetlands, albeit in some instances, on an ad hoc basis. In many cases wetlands are addressed through other natural resource monitoring programs e.g. vegetation, salinity, The Living Murray, TasVeg, etc. Wetlands are also monitored by regional groups (NRM bodies, CMAs) as part of their programs. Indicators most often measured include water birds, water quality, vegetation, crocodiles and feral animals (in the Northern Territory), and macroinvertebrates (in Western Australia).

Within the Ramsar wetland network, ecological character description work is being undertaken and in some cases very detailed assessments and descriptions are being completed. These may provide information that can support baseline or reference condition descriptions against which indicators can be assessed.

Table 11. RARC sub-indices and indicators.

Sub-Index	Indicator
Habitat	Longitudinal continuity of riparian vegetation
	Width of riparian vegetation
	Proximity to nearest patch of intact native vegetation
Cover	Canopy (>5 m tall)
	Understorey (1-5 m tall)
	Ground (< 1 m tall)
	Number of layers
Natives	Canopy (> 5 m tall)
	Understorey (1-5 m tall)
	Ground (< 1 m tall)
Debris	Leaf litter
	Native leaf litter
	Standing dead trees (> 20 cm dbh*)
	Hollow-bearing trees
	• Fallen logs (>10 cm dbh*)
Features	Native canopy species regeneration (<1 m tall)
	Native understorey regeneration
	Large native tussock grass
	• Reeds

^{*} Diameter at breast height

Table 12. TRARC sub-indices and indicators.

Sub-Index	Indicator
Plant Cover	Canopy cover
	Canopy continuity
	Midstorey cover
	Understorey cover
	Grass cover
	Organic litter
	• Logs
Regeneration	Canopy health
	Large trees
	Tree size classes
	Dominant tree regeneration
	Other tree regeneration
Weeds	Canopy weeds
	Midstorey weeds
	Understorey weeds
	Grass weeds
	Organic litter weeds
	High impact weeds
	High impact weed distribution
Erosion	Exposed soil
	Exposed tree roots
	Slumping
	Gullying
	Undercutting
Pressure	Bank stability
	Animals: managed and unmanaged
	• Fire
	Tree clearing
	Flow regime
	Other

Table 13. AquaBAMM criteria and indicators for riverine and non-riverine wetlands.

AquaBAMM Criteria	Indicators
Naturalness Aquatic	Exotic flora/fauna
(Diagnostic)	Aquatic communities/assemblages
(Chagnestie)	Habitat features modification
	Hydrological modification
	Water quality
Naturalness Catchment	Exotic flora/fauna
(Diagnostic)	Riparian disturbance
(2.18,13313)	Catchment disturbance
	Flow modification
Diversity and Richness	• Species
(Diagnostic)	Communities/assemblages
(2.18,13313)	Habitat
	Geomorphology
Threatened Species and Ecosystems	• Species
(Diagnostic)	Communities/assemblages
Priority Species and Ecosystems	Species
(Expert opinion)	• Ecosystems
Special Features	Geomorphic features
(Expert opinion)	Ecological processes
(Expert spinistry)	Habitat
	Hydrological
Connectivity	Significant species or populations
(Expert opinion)	Groundwater dependent ecosystems
. 1	Floodplain and wetland ecosystems
	Terrestrial ecosystems
	Estuarine and marine ecosystems
Representativeness	Wetland protection
(Diagnostic)	Wetland uniqueness

Table 14. Catchment, reach and geomorphic unit characteristics measured in the Geomorphic River Styles method. After Brierley *et al.* (1996).

Characteristics	Indicator
Catchment	
Relief measures	Catchment relief
	Catchment relief ratio
	Longitudinal profile
	Valley side slope length and angle
Areal properties	Catchment area
	Drainage pattern
	Elongation ratio
	Drainage density
Linear measurements	Stream order
	Stream length
Other measures	Geology
	Average annual rainfall and monthly averages
	• Landuse
	Vegetation distribution and type
	• Discharge
Reach	
Channel planform	Planform geometry
	Radius of channel curvature to mean channel width ratio (rc/w)
	Meander wavelength
	Type of geomorphic units present
Confinement	Valley width
	Degree and character of channel constriction
	Terrace character
Vegetation character	Percent coverage
Geomorphic Unit	
Identification	Within channel units
	Channel marginal units and bank character
	Floodplain units

continued on next page

Table 14 continued from previous page

Characteristics	Indicator
Morphology and dimensions of geomorphic units	Shape and size
	Channel geometry
	Channel bed elevation
	Width to depth ratio
Hydraulic parameters	Flow character
	Mannings roughness coefficient (n)
	Froude number
Vegetation character	Vegetation cover dimensions
	Vegetation composition
Assemblage and connectivity of	Spatial character of geomorphic units
geomorphic units throughout the reach	Channel – floodplain relationship
Lateral stability of the channel	Degree and character of channel obstruction
	Stream power
	Bankfull discharge
Sediment attributes	Grain size and distribution
	Sorting
	Rounding
	Facies / sedimentary structures
	Sediment mix and degree of packing
	Type of grading
Sediment relations	Degree of sediment storage
	Sediment yield or sediment delivery ratio (SDR)

With the state of the state of

Marine and estuarine

Similarly to the freshwater component of the Ecosystem Health Monitoring Program (EHMP), the Marine and Estuarine EHMP undertakes regular monitoring of indicators such as water quality, seagrass depth range, coral monitoring, and nitrogen tracking in the marine and estuarine waters in southeast Queensland.

The recently concluded Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management (The Coastal CRC) developed decision-making tools, understanding, and knowledge for the effective management and ecosystem health of Australia's coastal zone (inland extent of tidal influence to the extent of resource use and management in the near coastal waters), estuaries and waterways. The CRC linked terrestrial and marine issues, rural and urban issues, and industrial and recreational activities. Many of the partner organisations were Queensland based, and two of the three catchments used as study areas were in Queensland (Fitzroy and Moreton Bay). OzCoasts (http://www.coastal.crc.org.au/ozcoast/ index.html) and OzEstuaries (http://www.ozestuaries. org/) are two of the tools developed, providing comprehensive information about Australian estuaries and coastal zone, including conceptual models, guides to indicators and methodologies and decision support tools.

Conceptual models depicting processes and threats to estuarine wetlands were also developed (http://www.coastal.crc.org.au/wetlands/index.html). These models are currently being updated and used in the testing phase of the national Matters for Target indicators review for Estuarine, coastal and marine habitats integrity, as well as the development of the estuarine component of the Department of Natural Resources and Water's Stream and Estuarine Assessment Program (SEAP). More detail is provided in Section 8.

Wetlands.edu is a national wetland education and management training program designed to provide capacity building and skills development for regional and community investments in wetland-related assessment, planning and actions, supported by funding from the Natural Heritage Trust. It is aimed primarily at regional natural resource management and catchment bodies and their stakeholders, including Landcare and river management groups,

local governments and private landholders (Wetland. edu website, accessed 19.6.07).

Marine, estuarine and freshwater

Each State and Territory, and the Australian Government are obliged to report on the condition of the environment within their jurisdiction on a regular basis. In addition to State of the Environment (SoE) reporting they must also evaluate the effectiveness of environmental policies and provide environmental information to the public. The themes and indicators are selected from a core set of indicators determined by the State of the Environment Reporting Task Force of the Australian and New Zealand Environment and Conservation Council (ANZECC 2000). Riverine, lacustrine, palustrine, and subterranean wetlands are addressed under the theme of Inland Waters, and marine and estuarine wetlands under Estuaries & the Sea/Coastal Zone in Commonwealth and Queensland reporting (Table 15) (EPA 2005a).

Table 15. ANZECC core environmental indicators, Commonwealth State of the Environment 2006, and Queensland State of the Environment 2003 wetland indicators.

ANZECC Core Environmental Indicators—inland waters

Groundwater

- IW_1 Groundwater extraction versus availability
- IW_2 Exceedances of groundwater quality guidelines

Surface water

- IW_3 Extent of deep-rooted vegetation cover by catchment
- IW_4 Surface water extraction versus availability
- IW_5 Environmental flows objectives
- IW_6 Discharges from point sources
- IW_7 Surface water salinity
- IW_8 Exceedances of surface water quality guidelines
- IW_9 Freshwater algal blooms
- IW_10 Waste water treatment (inland waters)
- IW_11 Waste water re-use (inland waters)

Aquatic habitats

- IW_12 Vegetated streamlength
- IW_13 River health (AusRivAS)
- IW_14 Extent and condition of wetlands
- IW_15 Estimated freshwater fish stock

Estuaries and the Sea

Marine habitat and biological resources

- E+S_1 Changes in coastal use
- E+S_2 Disturbance of marine habitat
- E+S_3 Total seafood catch
- E+S 4 estimated wild fish stocks

Estuarine and marine water quality

- E+S_5 Coastal discharges
- E+S_6 Maritime pollution incidents
- E+S_7 Exceedances of marine and estuarine water quality guidelines
- E+S_8 Bio-accumulated pollutants
- E+S_9 Algal blooms in estuarine and marine environments
- E+S_10 Waste water treatment (coastal waters)
- E+S_11 Disturbance of potential acid sulphate soils

Global processes

- E+S_12 Sea level
- E+S_13 Sea surface temperature

3

Commonwealth State of the Environment (2006)—inland waters

Catchment Scale influences

- Influence of climate variability and change
 - o A_01 Annual variations in the Southern Oscillation Index
 - o A_02 Rainfall trends annual mean rainfall
 - o A_03 Rainfall extremes inter-annual variations in annual extreme rainfall
 - o A_04 Temperature trends annual mean temperature anomalies
 - o A_05 Temperature extremes percentage area of extreme annual mean temperatures
 - o A_06 Extreme weather-related effects cost of weather-related disasters

Hydrological condition

- Surface-water availability and human use
 - o IW_01 Annual river discharge
 - o IW_02 Annual water storage
 - o IW_03 Surface water used for irrigation
 - o IW_04 Surface water used for urban/industrial
- · Ground-water availability and human use
 - o IW_05 Average annual groundwater depth
 - o IW_06 Average annual groundwater pressure
 - o IW_07 Groundwater impact on river flows base flow index
 - o IW_08 Groundwater used for irrigation
 - o IW_09 Groundwater used for urban/industrial
 - o BD-08 Change in area and proportion of woody native vegetation
 - o IW_44 Sustainable yield determination

continued on next page

Table 15 continued from previous page

Commonwealth State of the Environment (2006)—inland waters

- Ecological aspects of river flow regimes
 - o IW_10 Assessment of River Condition indices
 - o IW_11 Number of licences dams, weirs, regulators and levees
 - o IW_26 Length of intact riparian zone >50-100 m wide
 - o IW_27 Condition of significant wetlands
 - o IW_28 Number of effective fishways
 - o IW_46 Implementation of COAG principles
- Connectivity dams, weirs, regulators and levees
 - o IW_11 Number of licences dams, weirs, regulators and levees

Land and vegetation condition

- Erosion
 - o LD_04 Exposed soil surface contributing to erosion
- Vegetation
 - o LD_01 Extent (proportion and area) of native vegetation (cross-reference to Biodiversity)
 - o LD_03 Extent and proportion of deep-rooted perennial (woody) vegetation cover.
- Nutrients and sediments sources and loads
 - o IW_12 Catchment nitrogen and phosphorus load
 - o IW_13 Catchment sediment load
- Sources of other pollutants
 - o IW_14 Volume of sewage discharge to surface waters by treatment category (primary, secondary, tertiary)
 - o IW_15 Volume of sewage discharged to land
 - o IW_16 Total pesticide use

Habitat scale influences

- In-stream habitat woody debris and sand slugs
 - o IW_24 Extent of sedimentation (incl sand slugs)
 - o IW_13 Catchment sediment load
 - o IW_18 Exceedence of suspended solids water quality triggers
 - o IW_25 Number and extent of re-snagging
 - o IW_30 Macroinvertebrate condition

3

Commonwealth State of the Environment (2006)—inland waters

- Riparian vegetation
 - o IW_26 Length of intact riparian zone >50-100 m wide
 - o BD_16 The proportion and area of native vegetation remaining
 - o LD_01 Extent (proportion and area) of native vegetation (cross-reference to Biodiversity)
 - o IW_34 Wetland vegetation condition
 - o LD_03 Extent and proportion of deep-rooted perennial (woody) vegetation cover
 - LD_17 Fragmentation of remnant vegetation. (cross reference to Biodiversity)
 - o IW_30 Macroinvertebrate condition
- Wetlands
 - o IW_27 Condition of significant wetlands
 - o IW_34 Wetland vegetation condition
 - o IW_33 Waterbirds Abundance and distribution
 - o IW_39 Wetland weeds
 - o IW_48 Ramsar wetlands with implemented management plans
- · Fish passage
 - o IW_28 Number of effective fishways
 - o IW_11 Number of licences dams, weirs, regulators and levees

Water Quality (for surface and groundwater)

- Sediment and turbidity
 - o IW_17 Exceedence of turbidity water quality triggers
 - o IW_18 Exceedence of suspended solids water quality triggers
- Nutrients
 - o IW_19 Exceedence of total nitrogen and phosphorus water quality triggers
- Salinity
 - o IW_20 Exceedence of salinity water quality triggers
- Other pollutants
 - o IW_21 Exceedence of pH water quality triggers
 - o IW_22 Exceedence of biological and chemical water quality triggers
- Thermal pollution
 - o IW_23 Mapping of water temperature depression due to dam releases

continued on next page

Table 15 continued from previous page

Commonwealth State of the Environment (2006)—inland waters

Response of Biota

- · Bacteria and algae
 - o IW_29 Blue Green Algae
- Macroinvertebrates
 - o IW_30 Macroinvertebrate condition
- Fish
 - o IW_31 Fish Abundance and Distribution
- Frogs
 - o IW_32 Frogs Abundance and distribution
- Waterbirds
 - o IW_33 Waterbirds Abundance and distribution
- · Wetland and floodplain communities
 - o IW_34 Wetland vegetation condition
- Exotic pests
 - o IW_35 Total number of introduced aquatic pests (fish, amphibians, mammals, plants)
 - o IW_36 Willow removal
 - o IW_37 Carp removal and/or commercial catch
 - o IW_38 Cane toad distribution
 - o IW_39 Wetland weeds
- Stream metabolism
 - o IW_40 Benthic metabolism case studies

Human response - policy and management

- New policy and management initiatives
 - o IW_43 Implementation of National Water Initiative
- Management of surface and groundwaters
 - o IW_44 Sustainable yield determination
 - o IW_06 Average annual groundwater pressure
 - o IW_05 Average annual groundwater depth
 - o IW_08 Groundwater used for irrigation
 - o IW_09 Groundwater used for urban/industrial
 - o IW_46 Implementation of COAG principles
 - o IW_45 Groundwater management plans that consider groundwater dependent ecosystems
 - o IW_47 (reduction in) Number of licensed point sources to inland waters
 - o IW_48 Ramsar wetlands with implemented management plans
 - o IW_49 River/catchment plans with aquatic biodiversity targets and funded actions

3

Commonwealth State of the Environment (2006)—inland waters

- · Environmental flows allocation and management
 - o IW_46 Implementation of COAG principles
- Habitat management (including wetland management)
 - o IW_47 (reduction in) Number of licensed point sources to inland waters
 - o IW_48 Ramsar wetlands with implemented management plans
- Management of aquatic biota and biodiversity
 - o IW_49 River/catchment plans with aquatic biodiversity targets and funded actions

Commonwealth State of the Environment (2006)—coasts and oceans

Condition of the Ocean

- Condition of marine biodiversity
 - o CO_O1 Trends in key species
 - o CO_02 Condition of threatened species
 - o CO_16 Status of Australian fisheries
 - o CO_44 Marine Chlorophyll concentrations
- Other aspects of ocean condition
 - o CO_03 Sea level
 - o CO_04 Sea Surface temperature variability
 - o CO_05 Changes in ocean currents
 - o CO_45 Estuarine condition index
 - o CO_46 Comparative water quality of coastal lakes and lagoons

Ocean contributions to Human Life

- Ecological services (air, water, climate)
- Food
 - o CO_07 Australian fisheries production
 - o CO_08 Aquaculture production
- Medicines and other potentially useful biological compounds
 - o CO_09 Number of compounds at some stage of commercial development
- Non-living material (materials and energy fuels)
 - o CO_1O Energy and dollar value of ocean-derived energy fuels
 - o CO_47 Quantity and dollar value of selected other ocean-derived non-living materials
- Non-material values (heritage, recreation, aesthetic and spiritual)
 - o CO_12 Value of and numbers participating in coasts and ocean-based eco-tourism and recreation
- Medium for transportation
 - o CO_14 Number of Ship visits
 - o CO_15 Number and tonnage of containers and bulk commodities imported and exported by sea

continued on next page

Table 15 continued from previous page

Commonwealth State of the Environment (2006)—coasts and oceans

Direct pressure of Human Settlements on Coasts and Oceans

- Direct pressure of harvesting living materials (fishing)
 - o CO_16 Status of Australian fisheries
 - o CO_17 Historical change in trophic structure of commercial catches
 - o CO_18 Historic change in trophic structure of recreational and Indigenous catches
 - CO_19 Illegal fishing: estimated tonnage taken; estimated number of illegal boats; estimated number of individuals of threatened species taken
 - o CO_2O Proportion of seabed disturbed by shelf, slope and deep ocean
 - o CO_21 Proportion by weight of bycatch
 - o CO_22 Aquaculture: extent of habitat removed
 - o CO_23 Aquaculture: volume of discharged sediments and nutrients
 - o CO_24 Aquaculture: origin species and tonnage of stockfeed used
 - o CO 25 Aquaculture: instances of disease and exotic species introduction from movement of live material
- · Direct pressure of harvesting non-living materials
 - o CO_26 Area disturbed/potentially disturbed by rigs, pipelines etc
 - o CO_27 Number, frequency, extent and volume of spills/leaks from rigs, pipelines etc
 - o CO_48 Area disturbed/potentially disturbed by seismic noise
- Pressure of shipping
 - o CO_49 Number, frequency, extent and volume of spills, collisions, shipwreck and leaks from shipping
 - o CO_50 Estimated number of collisions with marine animals
 - o CO_51 Quantity of sewerage, garbage and ballast water dumped
 - o CO_52 Area affected by channel dredging for shipping
- Pressure of coastal activities (other than shipping and fishing)
 - o CO_28 Volume of discharges from settlements and inland water outflows (cross reference to Land)
 - CO_29 Coastal pollution: area of potential acid sulphate soils disturbed by development draining into coastal waters (cross reference to Land)
 - o CO_53 Coastal pollution: potential disturbance of coastal and marine animals by visual and noise pollution from coastal activities
 - o CO_3O Displacement and disturbance of ecosystems: length and area of coastal and estuarine foreshore occupied by human structures or otherwise altered for human purposes
- Similar or cumulative pressures arising from multiple causes (fishing, shipping, energy and mineral
 exploration/exploitation and coastal activities)
 - o CO_31 Cumulative pollution: number and extent of harmful algal blooms
 - o CO_32 Cumulative pollution: quantity of marine debris from all sources

3

Commonwealth State of the Environment (2006)—coasts and oceans

Pressures and contributions between Atmosphere and Oceans

- Climate
 - o A_01 Annual variations in the Southern Oscillation Index
 - o CO_03 Sea level'
 - o CO_05 Changes in ocean currents
- Ozone
 - o A_13 Surface ultraviolet radiation in Australia and New Zealand mean summer total ozone and estimated ultraviolet index
- Airborne Substances

Pressures and Contributions between Inland Water and Oceans

- Condition of Interface Waters
 - o CO_28 Volume of discharges from settlements and inland water outflows (cross reference to Land)
 - o CO_03 Sea level
- Condition of Interface Species
 - o CO_01 Trends in key species

Pressures and Contributions between Land and Oceans

- General sub-issue
 - o CO_03 Sea level
 - o CO_05 Changes in ocean currents
- · Land outflows to coastal waters
 - o CO_28 Volume of discharges from settlements and inland water outflows (cross reference to Land)
 - CO_29 Coastal pollution: area of potential acid sulphate soils disturbed by development draining into coastal waters (cross reference to Land)
 - Condition of interface species
 - o CO_01 Trends in key species

Oceans Response Indicators

- General responses
 - CO_33 Number of species legislatively protected by class and jurisdiction (cross reference to Biodiversity)
 - o CO_54 Number/percentage of protected species with management plans in place
 - o CO_55 Number percentage of protected species where management actions have been taken
 - o CO_34 Number and extent of Marine Protected Areas (cross reference to Biodiversity)
 - o CO_56 Number/percentage of Marine Protected Areas under management plans
- Responses to fishing pressures

continued on next page

Table 15 continued from previous page

Commonwealth State of the Environment (2006)—coasts and oceans

- o CO_35 Proportion of State and Commonwealth fisheries under management plans or EPBC assessment
- CO_36 Changes in numbers of non-target species caught in bycatch since introduction of exclusion devices (cross reference to Biodiversity)
- CO_37 Numbers and proportions of recreational fishers subject to restriction (eg size or bag limits)
- o CO_57 Extent of marine environment subject to prohibition or management of recreational fishing
- · Responses to shipping pressures .
 - o CO_38 Changes in volume of ballast water released since commencement of ballast water strategy
 - CO_39 Change in number of reports of exotic species introduction since commencement of marine pest strategy
 - o CO_40 Changes in quantities of oil spilled since introduction of oil spill strategy
- Responses to exploration and extraction pressures
- Responses to coastal pressures
 - o CO_41 Changes in coastal area under any level of explicit environmental management
 - CO_42 Area or volume of coastal lagoons and lakes protected from discharges or where discharges are managed
 - o CO_43 Number, area or volume of coastal lagoons and lakes with entrance protection plans

Queensland State of the Environment (2003)—Inland Waters

Groundwater – subartesian water levels

- Artesian and sub-artesian water extraction rates vs availability
- Groundwater levels
- Introduction of uncontrolled artesian bores

Groundwater - artesian bore pressure

- Number of uncontrolled artesian bores
- Total length of bore drains
- Trend in artesian bore pressure
- Number of artesian bores capped
- Groundwater efficiency measures length of bore draines piped

Groundwater quality

- Land clearing extent of deep-rooted vegetation cover by catchment
- Rural and urban development
- Stream regulation and land irrigation
- · Exceedances of groundwater quality guidelines

3

Queensland State of the Environment (2003)—Inland Waters

Surface water quantity

- Surface water extraction rates
- · Surface water extraction vs availability
- Irrigation: water use by sector, area irrigated
- Mean annual flow, % of 'natural' / predevelopment
- Variability of flow (APDF or equivalent)
- Storage capacity (as % median annual runoff)
- Introduction of WRPs / ROPs (environmental flows objectives, number of plans, aerial coverage)
- Introduction of Land and Water Management Plans
- · Regulation of overland flow
- Increase in wastewater reuse (where appropriate)

Surface water quality

- Discharges of pollutants into waterways from point sources
- · Land practices, usage of chemical fertilisers and pesticides
- · Land clearing extent of deep-rooted vegetation cover by catchment
- Riparian zone condition
- · Livestock access to streams
- · River regulation, construction sites, sand and gravel extraction and mining
- Water abstraction
- Assessment of surface water quality parameters (salinity, pH, total N, total P, turbidity, pesticides) by catchment and in critical problem areas
- Assessment of secondary surface water quality parameters (dissolved oxygen, sediment N, P, toxicants, faecal contaminants)
- Incidences of algal blooms
- Extent and type of wastewater treatment improved level of sewage and industrial wastewater treatment (e.g. from secondary to tertiary)
- Development of major water resource management initiatives
- Implementation of urban stormwater and effluent management plans by Local Authorities
- Extent of community participation (e.g. Landcare, Waterwatch, catchment mgt groups)

Aquatic ecosystems - riverine habitat

- Clearing of stream riparian vegetation, reduction of riparian widths
- · Destruction of natural stream aquatic habitats
- Decline of river physical integrity (e.g. fragmentation, increasing lengths of river impoundment, channelisation, etc)
- · Vegetated stream length
- · Extent and condition of aquatic habitat
- Macroinvertebrate indices
- Estimated spread of exotic flora

continued on next page

Table 15 continued from previous page

Queensland State of the Environment (2003)—Inland Waters

Aquatic ecosystems – wetlands

- · Reduction in wetland cover
- Extent, diversity and condition of wetlands
- Wetland protection measures and restoration rates

Aquatic ecosystems – fish

- Barriers to movement of aquatic biota
- Estimated spread of exotic biota (flora and fauna)
- · Commercial and recreational fishing
- Status of fish stocks
- Macroinvertebrate biodiversity (richness) indices
- Distribution of endangered and 'iconic' aquatic species
- · Restoration of passage
- Implementation of pest, plant and animal strategies (e.g. Exotic Pest Fish strategy)
- Limits to harvest

Queensland State of the Environment (2003)—The Coastal Zone

Coastal resource use and development

- Changes in coastal use compared with 1999 where possible. Area of land in the coastal zone in the natural state (by habitat type wetlands, mangroves, saltmarsh, melaleuca, intertidal flats, dune vegetation). Area of land in the coastal zone in other than natural state (by land use urban, agricultural, plantation, public, private etc). Lineal extent of land developed (i.e. changed from natural) along the coastline.
- Total number and percentage of state's population living in the coastal zone
- · Annual average population growth by local government area
- Annual cargo throughput for Queensland Ports
- Annual tonnage of petroleum products moved by sea (import and exports)
- Annual number of pollution incidents in Queensland's territorial waters and offshore reported to the Australian Maritime Safety Authority
- Number and areal extent of approved extractive activities (by type e.g. silica and mineral sands) for each coastal region (tidal and non-tidal)
- Visitor bed numbers in the coastal zone
- Number of visitor permits to coastal and marine parks (including the Great Barrier Reef Marine Park)
- Number of recreational (motor and sail) and commercial vessels registered in Queensland
- Total seafood catch (total catch and effort by species of commercial fish, crustacean and mollusc species)
- Recreational fish catch and effort
- Annual total bycatch by fishery (commercial)
- · Area of seabed trawled and intensity of trawling
- Number of authorities to collect aquarium fish
- Number of permits to collect shells (and total volume)
- Areal extent of declared fish habitat areas

3

Queensland State of the Environment (2003)—The Coastal Zone

- Turtle, dugong and dolphin mortality through commercial fishing activity, shark nets and indigenous hunting
- · Area of coast in each coastal region under aquaculture ponds/cage facilities
- Annual aquaculture production (by type)

Coastal water quality

- Bioaccumulated pollutants
- Algal blooms in estuarine and marine environments
- Coastal discharges (quantity of nitrogen, phosphorus, sediments and other contaminants discharged per catchment area for each coastal region)
- Marine pollution incidences
- Exceedences of marine and estuarine water quality guidelines
- Wastewater treatment coastal waters. Discharge volume of primary, secondary and tertiary treated effluent (domestic and industrial sewage) into coastal waters
- Disturbance of acid sulfate soils

Coastal habitats and biodiversity

- Disturbance of marine habitat
- Estimated wild fish stocks
- Extent and diversity of estuarine, coastal and marine habitats (mangrove area, saltmarsh area, seagrass area (and changes since 1999), coral reef area, dune vegetation)
- Number and type of marine and terrestrial pest and displaced species identified as of concern in each coastal region
- Ship arrivals from foreign ports and ballast water discharged to Queensland waters

Coastal variability - physical processes

- Sea level (and wave variability)
- Sea surface temperature variability
- · Storm surge height
- Number and intensity of cyclone events for each coastal region

continued on next page

The Great Barrier Reef Water Quality Protection Plan ('The Reef Plan') is aimed at addressing diffuse pollution from broadscale landuse. A number of strategies and actions have been identified that support the objectives and goal of the Plan i.e. 'Halting and reversing the decline in water quality entering the Reef within 10 years'. It builds upon existing participation and support of stakeholders in identifying and implementing solutions, and facilitates sustainable natural resource management and long-term security of industries reliant on the Reef and its catchment (State of Queensland and Commonwealth of Australia 2003).

Queensland State agencies

In addition to the programs detailed above, NRW also undertakes regular state-wide freshwater riverine monitoring of water quality and macroinvertebrate assemblage to assess river health. The EPA undertakes water quality monitoring of the State's estuarine and marine waters using physical, chemical and biological indicators. NRW, in collaboration with the EPA, is currently developing a new monitoring program known as SEAP (Stream and Estuarine Assessment Program), which aims to assess the condition of aquatic ecosystems at the whole state scale and evaluate change in condition over time. This will be done in the context of hypotheses explaining how Queensland's aquatic ecosystems respond to particular human activities, and the biophysical changes to the aquatic environment resulting from the activities. Conceptual models will define these hypotheses.

3.3 Manuals and reviews

The most recent manual published in Australia on indicators and methodologies for wetlands is 'Recommended Methods for Monitoring Floodplains and Wetlands' (Baldwin et al. 2005). It details a consistent approach to selecting indicators and methods, and evaluating and reporting on changes to floodplains and wetlands. Whilst the indicators and methods are universally applicable to many wetland types, the brief for the project was limited to the types of wetlands and floodplains found in the Murray-Darling Basin (D. Baldwin pers. comm.). Pertinent information on monitoring and evaluation, setting objectives, defining conceptual models,

selecting indicators and methods, and evaluation and reporting is contained in this document and is applicable to any wetland program. The bulk of the text is given over to identifying indicators and methodologies (Table 16). Several appendices address monitoring programs throughout Australia, advantages and disadvantages of various taxa as tools for monitoring wetland condition, programs for specific interventions, and information on waterbird habitat preferences.

More specific information concerning wetland monitoring in Victoria was documented in a report entitled 'Options for the assessment and monitoring of wetland condition in Victoria' by Butcher (2003) in response to a Victorian Government mandate to establish a wetland assessment and monitoring program in that state. This document reviewed the national and international scientific literature on wetland condition and indicators, provided options for a statewide wetland condition monitoring program, and assessed the applicability, success or difficulties associated with the methods identified.

In 1998, van Dam et al. identified rapid assessment techniques for the early detection of pollutant impacts on wetland ecosystems, particularly in the wet-dry tropics of northern Australia. The paper describes the ideal attributes of early warning indicators and then evaluates the potential of existing assessment methods as early warning indicators of wetland degradation.

Victoria's Department of Sustainability and Environment has recently compiled a document as part of the Index of Wetland Condition project which details the different approaches to wetland studies throughout the world and at varying scales, the methods employed, and indicators used (DSE 2006). Appendix 3 in the document summarizes wetland assessment programs and is complementary to this literature search.

Table 16. Indicator headings and indicators identified for the floodplains and wetlands of the Murray-Darling Basin (Baldwin et al. 2005).

Indicator Headings	Indicators
Groundwater	Groundwater level
	Electrical conductivity
	Reduced iron and manganese
	Sulphate and sulphide
Soil and sediment	Soil moisture content
	Soil electrical conductivity (salinity)
	Soil water potential
	Soil carbon
	Presence of sulphidic and/or acid producing sediments
Phytoplankton	Algal community structure
	Chlorophyll a
Floodplain and wetland vegetation	Vegetation community structure
	Vegetation condition
Macroinvertebrates	Macroinvertebrate community structure
	Macroinvertebrate diversity and abundance
Fish	Electrofishing
	Bait traps
	Seine nets
	Fyke nets
Frogs	Frog community structure
	Frog diversity and abundance
Birds	Aerial survey
	Area searches
	Nest surveys

Internationally, the USEPA has reviewed programs and methodologies extensively. Fennessy et al. (2004) identified rapid methods that are most suitable for assessing the ecological condition of lacustrine and palustrine wetlands. Despite the variety of purposes for which these methods or assessments were developed, there were many common features. More recently, the USEPA has been developing a series of modules (Methods for Evaluating Wetland Condition) accessable via the Internet, to assist states and tribes to build their capacity to conduct ecological assessments of wetland health.

A handbook for monitoring wetland condition in New Zealand describes a set of science-based indicators to monitor the condition of New Zealand estuarine and palustrine wetlands (Clarkson et al. 2004). It was designed for managers, landowners and community groups and focuses on the major threats and stress factors known to damage wetlands.

Guidelines for the rapid ecological assessment of biodiversity in inland water, coastal and marine waters were delivered to the Ramsar COP9 meeting in 2005 and recently published (CBD Secretariat/ Ramsar Convention Secretariat 2006). They focus on the assessment of biological diversity at the species and community level. Reference is also made to tools which will assist in the assessment of wetland ecosystems. A 'decision tree' to facilitate the selection of appropriate methods is presented and summary information on a range of appropriate and available methods suitable for each rapid assessment purpose is included, as is information on a range of different data analysis tools.

The European Water Framework Directive is an integrated river basin management program for Europe. It was designed in response to growing concern over the degraded state of water in Europe. River basin management plans are being developed across Europe and will undergo revision every six years. Ecological and chemical protection of surface and ground water are priorities and are assisted by a series of directives. The plan is a detailed account of how the objectives set for the river basin (ecological status, quantitative status, chemical status and protected area objectives) are to be reached within the timescale required. It will include the river basin's characteristics, a review of the impact of human activity on the status of waters in the basin, an estimation of the effect of existing legislation and the remaining "gap" to meeting these objectives; and a set of measures designed to fill the gap. Additionally, an economic analysis of water use within the river basin must be carried out (Water Framework Directive website, accessed 19.6.07).

Wetlands have traditionally been classified as a way of identifying similar traits which might allow them to be managed, utilised or investigated in a systematic manner. There are many variations, depending upon the type of wetland and the attributes that are used to classify. For instance, many States in Australia have developed classification systems for lacustrine and palustrine wetlands to complement their programs; Queensland has not formally done this. As the Programme has progressed, particularly through this Scoping Study, it has become apparent that a formal classification of wetlands is necessary to ensure that all wetland types are identified and characterised.

4.1 Wetland definition

The definition of wetlands, as used by the State agencies in the Queensland Wetlands Programme was derived at a series of workshops and discussions involving State government scientists and officers in scoping the Mapping, Classification and Inventory Database project (EPA 2005b). It was subsequently endorsed by the Queensland Wetlands Joint Government Taskforce (QWJGT) for use by the Queensland Wetlands Programme. It is based on an internationally accepted definition (Ramsar) and tailored to Queensland conditions and information. Wetlands in Queensland are defined as:

Areas of permanent or periodic/intermittent inundation, with water that is static or flowing fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed 6 m. To be a wetland the area must have one or more of the following attributes:

- at least periodically the land supports plants or animals that are adapted to and dependent on living in wet conditions for at least part of their life cycle.
- the substratum is predominantly undrained soils that are saturated, flooded or ponded long enough to develop anaerobic conditions in the upper layers.
- the substratum is not soil and is saturated with water, or covered by water at some time.

4.2 Wetland types and sub-types

The Directory of Important Wetlands of Australia (DIWA) (Environment Australia 2001) is the current principal document of wetland classification in Australia. It is based upon the Ramsar wetland classification for use at a national and international level. Both the Ramsar Convention and DIWA have adopted a classification of wetlands where, at the ecosystem level, the classification is that proposed by Cowardin et al. (1979) into Marine (coastal wetlands including rocky shore), Estuarine (including deltas, tidal marshes and mangrove swamps), Riverine (wetlands along rivers and streams), Lacustrine (wetlands associated with lakes) and Palustrine (marshes, swamps and bogs) wetlands. Reservoirs (including water storage areas, excavations, wastewater ponds, irrigation channels, rice fields, canals) and Subterranean (inland subterranean wetlands) are also identified as wetland types. This is the classification adopted by the Queensland Wetlands Programme.

At a lower, or landscape and local wetland level, the number of classification systems and wetland sub-types increases exponentially. The Ramsar Convention and DIWA have identified 42 wetland types under three major headings similar to the broad Cowardin-style categories and then upon their geographic location, climate variables, water sources, dominant vegetation, and other distinguishing characteristics (Appendix 2). Whilst Ramsar and DIWA classifications differ slightly in the wetland sub-types that are recognised, they essentially classify wetlands using the same criteria.

There are other classifications that are based on geomorphological, hydrological, vegetation and water quality features. In many classifications, the Cowardin system is used as a primary filter and the wetlands under investigation are then classified according to the previously mentioned landscape features. Table 17 provides a list of wetland classifications and summary of category types currently in use in Australia and overseas.

Wetland Classification

Table 17. Wetland classification systems.

Classification	Details	
Ramsar	42 sub-types identified under three major headings: Marine and Coastal Zone Wetlands, Inland Wetlands, and Human-made Wetlands (Appendix 2)	
Directory of Important Wetlands	42 sub-types identified under three major headings: Marine and Coastal Zone Wetlands, Inland Wetlands, and Human-made Wetlands (Appendix 2)	
Cowardin et al. (1979) (North America)	Five wetland types: Marine, Estuarine, Riverine, Lacustrine, and Palustrine; 56 wetland classes. Modifiers: water regime, substrate, vegetation	
Hydrogeomorphic (HGM (Brinson 1993) (North America)	One wetland type: Palustrine Modifiers: geomorphic setting, water source and transport, hydrodynamics	
New Zealand Framework (Johnson and Gerbeaux 2004)	Nine wetland types: Marine, Estuarine, Riverine, Lacustrine, Palustrine, Inland salt, Plutonic (= Karst), Geothermal, and Nival (= Alpine)	
	Modifiers: water regime, vegetation structure, vegetation, substrate	
Blackman (1992) (Queensland)	Five wetland types: Marine, Estuarine, Riverine, Lacustrine, and Palustrine	
(based on Cowardin)	Modifiers: water regime, substrate, vegetation	
Wetland International – Oceania	Three wetland types: Riverine, Lacustrine, Palustrine: 20 sub-types.	
(Queensland's south-western wetlands) (Jaensch 1999)	Modifiers: salinity (fresh and saline), dominant vegetation	
Kingsford and Porter 1999	Seven wetland categories	
(Paroo River, Qld)	Modifiers: vegetation, geomorphology, salinity, hydrology	
Timms 1999 (Currawinya, Qld)	Five wetland categories	
	Modifiers: geomorphology, hydrology, water quality, water plants, invertebrates, birds	
Casanova 1999	Six wetland categories	
(Paroo Rivers, Qld)	Modifiers: water regime, vegetation	
Timms and Boulton (2001)	Five wetland types: Marine, Estuarine, Riverine, Lacustrine, and Palustrine	
(Paroo River, Qld)	Modifiers: Based on aquatic fauna (driving variables: salinity, turbidity, water regime)	
Northern Territory (Duguid 2002)	71 wetland categories under the headings: Basins (17 types), Flats (4 types), Channels (21 types), Springs (18 types), Subterranean (1 type), and Artificial (10 types)	
NSW (Green 1997)	14 wetland categories under the headings: Coastal, Tableland, Inland.	
	Modifiers: hydrology, vegetation	
WA (Hill et al. 1996)	13 wetland categories	
	Modifiers: salinity, vegetation	
Victorian Index of Wetland	Two wetland types: Palustrine, Lacustrine; 39 sub-categories.	
Condition (uses Corrick and Norman 1980)	Modifiers: vegetation, hydrology, salinity	

Withing the second seco

4.3 Wetland Description Tool

The Wetland Indicators Workshop was a forum to develop indicators for Queensland lacustrine, palustrine and groundwater wetlands. Part of that process was to identify wetland types, develop conceptual models for them, and identify drivers, pressures and potential indicators (Maher et al. 2006). As the reporting process proceeded, a number of weaknesses were identified that would not satisfy the requirements of the Queensland Wetlands Programme. A major requirement of a contemporary classification system is that different wetland types be identified using desktop techniques such as remote sensing and data trawling, particularly for determining extent and distribution.

Based on work by a working group of QWP project managers, attributes have been identified addressing characteristics of wetlands at increasingly specific scales (continental, ecosystem, landscape, and local) (Table 18). Each category has specific layers to identify different features of wetlands that have traditionally been used in classification systems.

It is inevitable that some wetlands will not exactly fit the new description categories, therefore it is important to recognise that a degree of flexibility is required to place wetland types within the tool. The method should be designed to draw upon existing data, as well as have the ability to incorporate new data. All layers may also have limitations depending on their reliability and their relevance to the desired objectives. Layers are identified as either primary or secondary. The latter layers are those layers that are not essential but that may fine tune the wetland classification, or that are currently difficult to source.

This Tool was also presented to the NLWRA Wetland Indicators national workshop for consideration as a translation tool between each jurisdiction's preferred wetland classification system and DIWA wetland subtypes. Only the Continental and Ecosystem layers were accepted; the Landscape and Local layers were rejected. Reasons for the rejection included a lack of financial support, jurisdictional ability to support such a tool, and a concern that, in time, the Tool would usurp their own State classifications. The additional layers were included in the National Wetland Indicators Final Report as an option (Conrick et al. 2007).

Table 18. Wetland Description Tool layers to assist in classifying wetlands in Queensland.

Resolution	Tier	Category	Attribute
Continental	Primary	Climate	Equatorial
			Tropical
			Subtropical
			Desert
			Grassland
			Temperate
Ecosystem	Primary	Ecological systems	Marine
			Estuarine
			Riverine
			Lacustrine
			Palustrine
			Subterranean
			Nival
			Reservoir
Landscape	Primary	Soils (permanently inundated areas)	Peat (organic)
			Mineral
			Rock (non-soil)
	Primary	Geomorphology / Topography	Floodplain
			Non-floodplain (springs, soaks, karst)
			Non-floodplain (depressional)

Resolution	Tier	Category	Attribute
	Secondary	Substrate	Igneous
			Metamorphic
			Sedimentary-detrital
			Sedimentary-pyroclastic
			Sedimentary-chemical or organic
			Unconsolidated
			Examples of these are:
			Dolerite (Ig)
			Granite (Ig)
			Limestone (Sedim-detrital)
Local	Primary	Dominant Vegetation Structure	Forested
			Shrub
			Sedge/grass/forb
			No emergent vegetation
	Primary	Water Regime	Commonly wet
			Periodic inundation
	Primary	Water Type	Saline
			Freshwater, low pH
			Freshwater, neutral/high pH

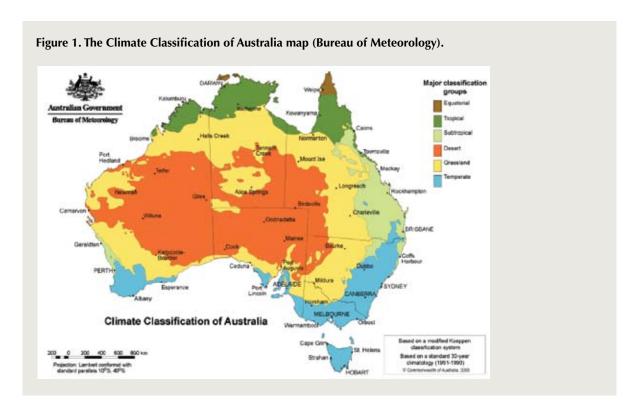
Climate

Climate describes the synthesis of weather observations over a long period of time. It can be classified into zones using criteria such as rainfall, temperature, humidity and vegetation. The Climate Classification of Australia from the Bureau of Meteorology website is recommended as the basemap for this layer (Figure 1).

Ecological systems

These are the categories identified by Cowardin et al. (1979) and being adopted by Ramsar and DIWA (Environment Australia 2001).

Soils


Wetland soils impact directly on other wetland characteristics e.g. water quality, fauna, vegetation, and can be a reflection of the physical processes occurring in the wetland e.g. water inflow, water chemistry, filtering of pollutants. The national soils layer is the Australian Soil Resource Information System (www.asris.csiro.au) which carries broad scale to point scale information.

Substrate

The substrate layer is the material lying below the soil layer that shows no pedological development. It may or may not be the parent rock of the wetland soil. This layer is proposed as a secondary layer that may be useful in describing wetlands but not essential. The proposed attributes are those described in McDonald et al. (1990). They summarize more than 70 categories of more recognisable rock types (e.g. igneous, dolerite, limestone).

Geomorphology/Topography

This layer is derived from topographical maps and vegetation mapping layers to identify different landforms. Three relatively simple landforms are proposed based on floodplain, non-floodplain (springs, soaks and karst), and non-floodplain (depressional).

WINDS AND THE REAL PROPERTY OF THE PARTY OF

Dominant Vegetation Structure

Vegetation mapping layers from the Regional Ecosystems (RE) database are used to determine the dominant vegetation structure.

(http://www.epa.qld.gov.au/nature_conservation/biodiversity/regional_ecosystems/)

Water Regime

Water regime stands alone as a component of wetlands that impacts upon all other facets of wetland existence. The presence of water, and its quality, quantity, and source, determines the salient features of a wetland. The information for this subcategory is derived from remote imagery (possibly satellite) of wetland extent over a range of wet and dry periods.

Water Type

Wetland water chemistry is, in part, determined by the surrounding landscape and, in turn, dictates features of the wetland such as vegetation. This information can be used to determine the 'normal' water chemistry of a waterbody. Vegetation mapping layers are one source of remote sensing information that may be used to derive this sub-category, as well as other documented ground-based information.

4.4 Identification of Queensland wetland types

A latter phase of the Scoping Study project has been to use and test the Wetland Description Tool using wetland types identified through the literature (QWP Management Profiles (EPA 2006), Jaensch (1999); Timms (2001); Timms & Boulton (2001)) and ongoing program development (AquaBAMM (P. Clayton pers. comm.), conceptual models developed in this project). The aim is to define a set of no more than 20 lacustrine and palustrine wetland types from which those types that are missing from the conceptual model set can be identified and developed.

A major focus of the project was to run an experts' workshop to scope and agree on key indicators for monitoring wetland extent and condition in Queensland. From the literature search, it became obvious that riverine and estuarine wetlands were the main focus of current research and monitoring efforts, and that there was a lack of information about lacustrine, palustrine and groundwater ecosystems in Queensland. It was therefore decided that the workshop would concentrate on the latter systems.

The workshop was attended by a broad cross-section of wetland workers from across Australia, with representatives from agencies, universities, NRM bodies, and NGOs. Under guidance from the participants, the first step was deemed to be the development of a framework for selecting indicators (Maher et al. 2006).

Wetland Classification

5 A Monitoring Framework

5.1 Indicator criteria

This was controlled by a suite of criteria developed from the National Monitoring and Evaluation Framework. The most important points were that indicators:

- are suitable for use within multiple Natural Resource Management processes;
- had the capacity to be grouped into a suite of indicators for use at a range of spatial scales from local to national and international;
- are cost-effective, affordable, consistent, and practical;
- are efficient in terms of time requirements;
- are SMART: smart, measurable, accessible, relevant, and timely; and
- have the capacity to be tested using existing technical capabilities.

5.2 Indicator considerations

Discussion of the issues surrounding indicator selection resulted in a suite of determining factors for identification of indicators (Table 19).

Classification

Classification of inland non-riverine wetlands in Australia is a much debated topic and difficult to define due to the transient nature of wetland conditions. Most wetlands undergo varying phases of wetting and drying, subject to prevailing climate

Table 19. Criteria for selecting indicators.

Consideration	Criteria	
Classification:	wetlands types and sub- types	
Purpose:	• baseline condition and extent,	
	cause and effect, or	
	management responses	
Spatial Scale:	• individual,	
	• regional,	
	• state,	
	national or	
	international.	
Time Scale:	• short,	
	medium, or	
	long term.	
Practicality:	skill level required	
	o minimum,	
	o intermediate, or	
	o advanced, and	
	economic feasibility	
	o low,	
	o medium, or	
	o high cost	

Manager Manage

conditions. Rather than being classified, they should be more correctly placed along a spectrum of wetland function at any one point in time. This may be the case in reality but, for the purposes of developing conceptual models and selecting indicators, it is functionally more rigorous to allocate a wetland to a sub-type description (see Section 4). This allows standardised conceptual models to be built, which may then be adapted for particular regions or conditions.

Purpose

There is a need for clarity of purpose, or the end use, of an indicator in order to ensure that an appropriate indicator and methodology is defined. There can be several purposes for monitoring extent and condition of wetlands, including condition and trend, monitoring the success or otherwise of management actions and selecting an impact or pressure and monitoring its effect on the wetland. Different indicators may be necessary for each of these purposes. It is noted that not all indicators will work for all purposes.

Spatial scale

The spatial scale of the monitoring must be defined and the indicators selected accordingly. The indicators that are useful at an individual or regional scale (e.g. fish assemblages) may be very different to those used at a State, national or international scale (e.g. remote sensing of riparian vegetation). It is noted that not all indicators will work at all scales, and that methodologies may differ for the same indicator at different scales or in different regions.

Temporal scale

The purpose of monitoring wetlands is important in determining the time scale over which monitoring will occur. As wetlands also change over time, it is crucial to have an understanding of the cyclical nature of the wetlands under investigation. For these reasons it is often recommended that indicators measured over longer periods have a degree of permanency. Vegetation is often selected over aquatic elements as a suitable indicator. Selecting indicators that are not greatly impacted by time considerations will work better over varying time scales, enabling comparisons between datasets. Consideration should also be given to selecting indicators that are appropriate for the temporal scale and effort e.g. indicators that change regularly or widely are not appropriate if the sampling regime is irregular or infrequent.

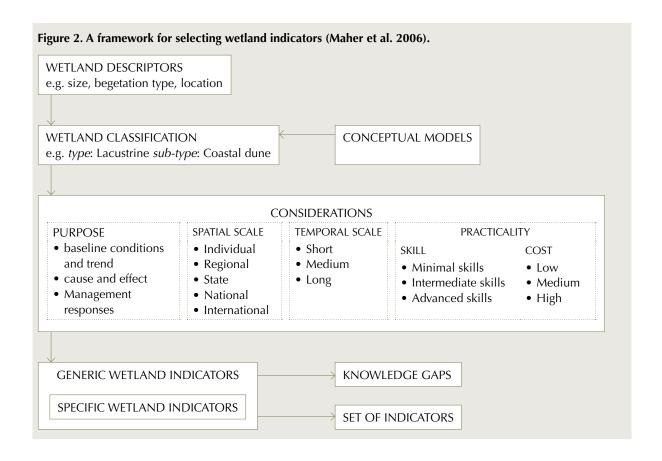
Practicality

Wetlands are potentially monitored by a range of organisations with varying skill levels from community groups through to advanced scientific groups. For an indicator to be truly universal, methodologies must be developed which consider the level of technical skills of the monitors. At community levels, basic testing and recording would be appropriate, whereas, at the advanced skill levels the monitoring would be more complex and an understanding of the processes and functions of wetlands would be essential.

Likewise, the cost of monitoring is a factor that also needs consideration. Often, the level of skill required will determine the cost, with more advanced methods incurring higher costs. There may also need to be tradeoffs where the higher costs are warrented, as lower cost resource condition indicators do not meet the needs of the purpose.

A Monitoring Framework

5 A Monitoring Framework


5.3 The framework

Identification of wetland descriptors and subsequent subtypes is the first step in the indicator identification process. This will direct the development of conceptual models and identification of key features of the wetland and the drivers, pressures, and impacts that are important to the functioning of the wetland. These, in turn, will determine the indicators that are sensitive to changes in the wetland condition. There is little point in monitoring something that will not change in response to an impact. It is expected that there will be a set of indicators that will be used across a set of wetland sub-types, and then there will be another set of indicators to address issues specific to individual wetland sub-types. As well as a set of indicators, knowledge gaps will also be identified. This framework is depicted diagrammatically in Figure 2.

5.4 Conceptual Models

The wetland sub-types that emerged through the workshop process were a mixture of palustrine and lacustrine wetlands identified by geographic location, vegetation, and geomorphology. Some were common occurrences in Queensland, whilst others were not. Time and capacity limited the subtypes that could be modelled, so some common subtypes were not addressed. The workshop conceptual models are presented and discussed in Section 9.

Consultation following the workshop suggested that there may be alternative ways of identifying wetland subtypes. This led to the development of the Wetland Description Tool (Section 4.3) as a classification system for Queensland.

6 Application of the Framework in Queensland

Following the development of the framework by the workshop participants, the project team held discussions with other teams to discuss and find synergies between the Wetland Indicators Framework and the methods being used or proposed on other wetland programs.

6.1 Stream and Estuarine Assessment Program

The Stream and Estuarine Assessment Program (SEAP) is a whole-of-government development driven by the Department of Natural Resources & Water and the Environmental Protection Agency which will eventually replace the current state-wide water quality monitoring programs. The recent review of roles and responsibilities of State Government agencies has reinforced the purpose and design of SEAP (Keliher 2007). It is a hypothesis-based program where conceptual models will be developed to explain how Queensland's aquatic ecosystems respond to particular human activities, and the biophysical changes to the aquatic environment resulting from the activities.

Freshwater

The freshwater component of the SEAP is based upon a 'Pressure-Stressor-Response' (PSR) framework (Figure 3). Landscape elements that govern natural ecosystem function have been termed natural drivers. These interact to produce the variable biophysical conditions to which individual species, and hence ecosystems, are adapted. Human activities have been termed pressures. Pressures modify the biophysical conditions experienced by ecosystems and their constituents either indirectly, by modifying the drivers themselves (as is the case with climate change), or, more typically, by interacting with the influence of the drivers to directly modify the biophysical conditions within the ecosystem. The biophysical condition attributes that are modified by pressures have been termed stressors because they elicit ecosystem responses. Ecosystem condition for SEAP will be defined using a referential approach which provides the framework for the development of conceptual models. These models will describe the ecosystems as if they were unimpacted by human activity (Marshall et al. 2006b).

Queensland is divided into nine biogeographic provinces based upon the natural structural patterns expressed by one ecosystem constituent (aquatic macroinvertebrates) and then confirmed by another (fish) (Marshall et al. 2006c). Conceptual models of natural ecosystem function, which underpin the development of the PSR models, are being developed for each of Queensland's freshwater biogeographic provinces. The models are developed based on relevant literature and data, as well as expert

Figure 3. Pressure-Stressor-Response (PSR) framework illustrating how human activities modify the prevailing biophysical conditions generated by natural drivers to elicit ecosystem responses (Marshall et al. 2006b). **Natural drivers** Climate Hydrology Geology Climate change **Pressure** Land use, landscape management, water use, urbanisation, recreation and tourism Stressors Acid soil runoff, biota removal or disturbance, flow management, habitat removal or disturbance, nutrients, pathogens, salinity, sediments, toxicants **Mediators** Biophysical conditions **Ecosystem response Biological** Physical/Habitat Alterations to instream Alterations to instream and riparian habitatand riparian biotastability, fragmentation, behaviour, reproduction, reduction, heterogeneity, fecundity, fitness, mortality, geomorphology species extinction

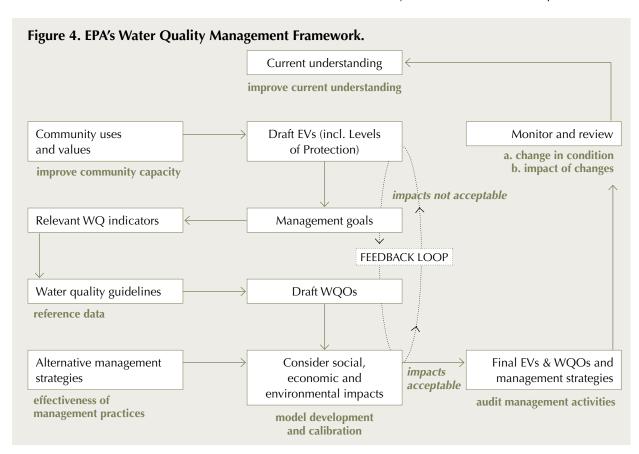
Application of the Framework in Queensland

6 Application of the Framework in Queensland

knowledge and experience. Using the conceptual models and the PSR models, a list of prioritised stressors will be ascertained and the indicators appropriate to that particular province selected.

In essence, this framework aligns with the Wetland Indicator Selection Framework proposed by this project.

Estuarine


The estuarine component of SEAP has a similar framework to the freshwater component, and is aligned to the NLWRA drive to identify appropriate indicators for the Estuarine, coastal and marine habitat integrity Matter for Target. It is driven by the Water Quality Management Framework developed by the EPA (Figure 4). This framework has been developed to underpin all of their ecological programs e.g. AquaBAMM, Ecological Value Assessments, State of the Environment reporting, NLWRA indicator trials. It aligns with the wetland indicators framework.

6.2 Ecosystem Health Monitoring Program

The EHMP program was developed in response to the South-east Queensland Regional Water Quality Management Strategy, which in itself was initiated by the recognition that the south-east corner of the State was under the threat of pressures by an everincreasing population and the accompanying land use intensification.

It has six stages, three of which have been completed. Stage 1 was a scoping study, Stage 2 the development of the estuarine and marine monitoring program, and Stage 3 the development of the freshwater monitoring program (Abel et al. 2005).

The estuarine/marine monitoring program was built upon a conceptual model that integrates the current understanding of Moreton Bay and its associated waterways with community-driven environmental values. The model focused on assessing the responses of the ecosystem to natural and human pressures.

WATER STATE OF THE PARTY OF THE

The freshwater monitoring program was developed by a study team which used a six-step process to identify and test the most appropriate indicators for assessing the health of waterways in South-east Queensland:

- A list of potential indicators addressing physical, chemical and biological attributes of river health was drawn up by the study team.
- Conceptual models to show the important attributes of river health and the impact by disturbances were developed.
- Streams in the region were classified to ensure that comparisons were made between similar types of streams.
- Pilot studies were undertaken to assess the usefulness of indicators.
- A major field trial was undertaken and the results assessed against a known diffuse land-use disturbance gradient. Indicators with strong relationships were recommended for the monitoring program.
- Five indicators, covering a range of processes, were used in the monitoring program.

The Wetland Indicators Framework aligns with both the estuarine/marine and the freshwater EHMP indicator selection.

6.3 eWater

eWater CRC is a cooperative venture, formed under the Australian Government's CRC Programme, and set up by Australia's water resource management and research sector. It currently has 45 industry partners including state governments, Federal government, universities and consultant groups. Its core business is building water management tools for partners and bringing those tools to Australian and international markets.

One of the many tools being proposed by eWater is the Integrated Monitoring and Assessment System (IMAS). This tool will assist the user to select physical, chemical and biological indicators for monitoring and assessment programs. As such it will support both new and existing monitoring and assessment programs. It will facilitate the development of well targeted monitoring programs, coupled to key performance indicators for environmental

management. This tool, although yet to be produced, appears to align with the Wetland Indicators Framework.

6.4 Lake Eyre Basin

In recent years much work has been done in the Lake Eyre Basin in preparation for sustained monitoring. Major projects include the joint South Australian and Queensland Aridflo project to develop an interactive predictive model of hydrology-biology relationships for Australian arid zone rivers, and the Lake Eyre Basin Rivers Assessment Methodology Development Project by Griffith University in conjunction with the Queensland Government for Land and Water Australia. Both these projects were developed with the knowledge that Australia's arid zone rivers are very different in their biology, hydrology and geomorphology compared to other Australian rivers, and it is essential that river management in this region is based on local information rather than extrapolation from other, wetter rivers.

Following on from these initial projects, the Lake Eyre Basin Assessment commenced as part of the Lake Eyre Basin Agreement between the Australian Government and the governments of Queensland, South Australia and the Northern Territory.

All these projects have developed conceptual understandings of the arid zone, and proposed multiple indicators for assessing river health. They all align with the principles of the Wetland Indicators Framework.

6.5 Sustainable Rivers Audit

The SRA was developed in a pilot program that utilised a conceptual model of river ecosystem function which states that *impacts can occur at the landscape, river reach or site scale, impacting on biota and their ecology at all scales* (MDBC 2004). Considerations such as biological and physical elements, structural and functional indicators and 'drivers as well as 'outcomes' were used to select appropriate indicators. Whilst the initial indicators were developed for instream habitats, indicators under development are for both instream and

6 Application of the Framework in Queensland

wetland habitats. The Audit will detect large scale change providing a standard framework across the Basin for comparing information. It aligns with the Wetland Indicators Framework.

6.6 Marine and Tropical Sciences Research Facility

The Marine and Tropical Sciences Research Facility is supporting many projects to research the key environmental challenges facing the Great Barrier Reef and its catchments, tropical rainforests, including the Wet Tropics World Heritage Area, and the Torres Strait. Two projects under Programme 7, Halting and reversing the decline of water quality, are investigating indicators and thresholds of concern in freshwater systems, and marine and estuarine systems. They are identifying and testing indicators in a conceptual model framework, and developing strategies for designing monitoring and assessment programs for the Wet Tropics region.

6.7 Framework for the Assessment of River and Wetland Health

The National Water Commission is charged with implementing the National Water Initiative (NWI), a comprehensive strategy to improve water management across the country. Part of the NWI is to address environmental water provisions (water availability, water use, and river health), ensuring that water degradation can be detected and causes addressed. The Framework for the Assessment of River and Wetland Health is a component of the Australian Water Resources 2005 project. It is developing an approach that can be used by all Australian states and territories to provide assessments of river and wetland health that can be reported at a national scale from comparable state/territory-based assessments (Norris et al. 2007).

The Framework will bring together a number of related elements of riverine and wetland condition and derive indices that can be scaled and compared. It will detail how an assessment will be made ('how to'), but it will not be prescriptive on what is monitored (the indicators), although recommended methods will be provided. It will remain the prerogative of the jurisdiction to select indicators that are considered to be the most appropriate for the wetland or river reach being monitored. The ecological basis of condition indicator selection will be derived from conceptual models that identify key wetland ecological and physical drivers and pressures. Individual wetlands must be understood in terms of their physical, biological and chemical processes, and indicators should be selected to reflect the changes that may occur to a wetland under different impacts. In addition, assessments will be made against a referential condition. This Framework aligns strongly with the Wetland Indicators Framework.

7 Riverine Wetlands

Riverine wetlands are those wetlands contained within a channel, that are not dominated by vegetation, and with water containing less than 0.5% ocean-derived salts. A channel is 'an open conduit either naturally or artificially created which periodically or continuously contains moving water, or which forms a connecting link between two bodies of standing water' (Langbein and Iseri 1960, cited in Cowardin et al. 1979).

7.1 Natural Resource Management Resource Condition Indicators

The current riverine NRM resource condition indicators are listed under the Inland Aquatic Ecosystems Integrity Matter for Target (River Condition) (Table 20). These indicators are currently undergoing review by the NLWRA as part of a system-wide review in preparation for the second Audit. Whilst many other Matters for Target have finished the review process, the riverine indicators were delayed until the development of the NWC Framework for the Assessment of River and Wetland Health (FARWH) was completed. This process is commencing in mid-2007. If the same process to the wetland indicators review is followed, it is expected that the indicators selected will align with the NWC FARWH themes.

7.2 Stream and Estuarine Assessment Program

As outlined earlier in this document (Section 6.1), the Stream and Estuarine Assessment Program (SEAP) is currently being developed by two State agencies (Natural Resources & Water (NRW) and Environmental Protection Agency (EPA)). It will eventually replace the current state-wide water quality monitoring programs run by those agencies. It is a hypothesis-based program where conceptual models will be developed to explain how Queensland's aquatic ecosystems respond to particular human activities, and the biophysical changes to the aquatic environment resulting from the activities. NRW is developing the freshwater component of the program and EPA the estuarine.

The freshwater component of the SEAP is based upon a 'Pressure-Stressor-Response' (PSR) framework (Figure 3 (Section 6.1)). Landscape elements that govern natural ecosystem function have been termed natural drivers which interact to produce the variable biophysical conditions to which individual species, and hence ecosystems, are adapted (e.g. climate). Pressures are human activities that modify the biophysical conditions experienced by ecosystems and their constituents either indirectly, by modifying the drivers themselves (e.g. climate change) or, more typically, by interacting with the influence of the drivers to directly modify the biophysical conditions within the ecosystem. The biophysical condition attributes that are modified by pressures have been

Table 20. Riverine NRM resource condition indicators.

River Condition

For regionally significant reach based issues that is the subject of targets in regional plans, the indicators are:

(Indicator Status: For Advice)

- Benthic macroinvertebrate community assemblages (Indicator Status: For Advice)
- Fish community Assemblages (Indicator Status: For Advice)
- Benthic diatom community assemblages(Indicator Status: For Advice)
- Riparian vegetation community assemblages (Indicator Status: For Advice)
- Riverine physical structure and in-stream habitat (Indicator Status: For Advice)
- Water quality (Indicator Status: For Advice)
- Hydrology (Indicator Status: For Advice)

If all or most of these indicators are measured, it may be possible to use monitoring data to develop an index of river condition

Riverine Wetlands

7 Riverine Wetlands

termed *stressors* because they elicit ecosystem *responses*. Ecosystem condition for SEAP will be defined using a referential approach which provides the framework for the development of conceptual models. These models will describe the ecosystems as if they were unimpacted by human activity (Marshall et al. 2006b).

Queensland is divided into nine biogeographic provinces based upon the natural structural patterns expressed by one ecosystem constituent (aquatic macroinvertebrates) and then confirmed by another (fish) (Marshall et al. 2006c). Conceptual models of natural ecosystem function, which underpin the development of the PSR models, will be developed for each of Queensland's freshwater biogeographic provinces based on relevant literature and data, expert knowledge, and experience.

Pressures relevant to Queensland were identified from Regional NRM Plans. Using conceptual models and the PSR model, and utilising a risk assessment approach, a list of potential prioritised stressors will be determined and the indicators appropriate to that particular province selected. Factors that must also be considered are the feasibility of implementation, the amount of variability in the response that might be expected as well as knowing the trajectory of change (i.e. what the condition might be given that there had been no impact), and enough of an understanding of the indicator to enable accurate interpretation. As well as representing either a pressure, stressor or response, indicators can also be sensitive (will an indicator be precise enough to have confidence that it will identify the cause of an effect), general (can represent several different vectors) or early warning (provides an indication of change before serious environmental harm occurs).

Common stressors identified for Queensland are:

- · Acid soil runoff
- Biota removal or disturbance
- Flow Management
- Habitat removal or disturbance instream
 Habitat removal or disturbance riparian
- Habitat fragmentation instream
- Habitat fragmentation riparian
- Thermal alteration
- Nutrients
- Organic matter
- Pathogens
- · Pest species
- Salinity
- Sediments
- Toxicants

To date, only the Central Province (Fitzroy and Burdekin Basins) model has been developed and potential indicators identified. The stressors identified above were prioritised, and the capacity to monitor them was assessed. Pressure, stressor and response indicators and measures for Central Province are in Table 21. Indicators for other provinces will not be determined until the province is modelled.

It is expected that the SEAP program will be instigated in 2008 to replace the current state-wide river health monitoring program.

Table 21. SEAP Indicators and measures identified for collection in the Central province of Queensland.

Stressor Model	Ecosystem Indicators	Stressor Indicators	Pressure Indicators
1. Suspended solids	Fish condition (decrease in fish food by increased suspended solids)	Index of stream productivity potential (represents food availability to consumers)	Catchment erosion modellingLand use (GIS)
2. Habitat removal or disturbance – riparian	 Bank stability Bed stability Presence and extent of different structural types of weeds Instream debris – wood and leaves 	 Riparian extent, connectivity Riparian habitat element measures: structural vegetation types and cover woody debris bare patches 	 Riparian/catchment land use Rate of removal
3. Flow management – Vno flow spells	• Tba	IQQM flow change from naturalNo flow spells	Number of water abstractions/licences
4. Pest species – riparian	 Change to riparian vegetation community structure and cover Density of edible understorey plants (grazing pressures) Bank stability (cows/wild pigs) 	 Direct measure of riparian weed structure and cover Cattle stocking density Pugging – footprints per length Watering access point along stream 	Extent of pest species
5. Habitat removal or disturbance – instream	Macroinvertebrate richness	Substrate heterogeneity	Land useRiparian widthModelled catchment loads
6. Sediment deposits	Changes in macroinvertebrate communities, substrate preference groups	Rate of deposition	 Modelling of catchment erosion Land use (GIS) Bare areas (GIS) Width and fragmentation of riparian zone Bank stability

7.3 Sustainable Rivers Audit

The Sustainable Rivers Audit (SRA) is a monitoring and assessment program for the Murray-Darling Basin, involving the participation of six governments (Australian, Queensland, New South Wales, Victoria, South Australia and Australian Capital Territory) and a community advisory group. It uses indicators to assess the current ecological condition of the Murray-Darling Basin river valleys (MDBC 2004). Three indicator themes are currently being monitored (fish, macroinvertebrates and hydrology) and others are under development (physical form, vegetation and floodplain). The current indicators target instream habitats; the vegetation and physical form indicators under development will encompass wetlands on the floodplain as well as instream habitats. The floodplain components of these themes will also be included in the floodplain theme, which is expected to consider many other components. Current and proposed indicators are in Table 22. This monitoring, both current and proposed, will provide information to assist in setting targets and developing strategies to improve the management of rivers.

7.4 Lake Eyre Basin Rivers Assessment

Under the Lake Eyre Basin (LEB) Agreement, the Lake Eyre Basin Ministerial Forum must review the condition of all the watercourses and catchment in the LEB Agreement Area. The LEB Rivers Assessment is reviewing the status of the Basin, identifying gaps in information, and developing a program to improve understanding of arid rivers and assist in monitoring design and implementation. (LEB website, accessed 29.5.07)

The Assessment Methodology Development Project developed a list of proposed indicators to assess the health of watercourses and catchments in the LEB. This list was later refined at a workshop attended by Government representatives, scientists, and regional representatives (Table 23). Outcomes of the report and workshop included:

- Three regions are recognised in the Basin: headwaters, channels and waterholes, and terminating wetlands. Indicators are allocated against one, two or all regions depending on their ability to assess changes in condition in those parts of the Basin.
- Four major themes of the Basin were identified: flood and river flows, catchment condition and physical form, riparian areas and floodplains, and waterholes and wetlands.

Table 22. Themes, indicators and measures currently in use and being developed for the Sustainable Rivers Audit.

Theme Index	Indicator	Measure
Fish (channel)	Expected species	Observed to expected (OE)Observed to predicted ratio (OP)Total species richness
	Nativeness	Proportion of native biomassProportion of abundanceProportion of species
	Diagnostic	 Pelagic species richness Benthic species richness Proportion macrocarnivores Proportion megacarnivores Total Abundance Fish with abnormalities Intolerant species richness

Theme Index	Indicator	Measure
Macroinvertebrates (channel)		Richness biodiversitySIGNAL ScoreAUSRIVAS OE
Hydrology (channel) (the indicators for this theme are	High Flow	 1:2 year ARI Flood event number 1:5 year ARI Flood event number 1:10 year ARI Flood event number
those recommended from the Hydrology Pilot SRA Program)	Low and Zero Flow	Low flow event numberLow flow event durationZero flow Days Difference
	Variability	Seasonal amplitudeYearly variation
	Seasonality	Seasonal Period Index (frequency distribution)
	Flow volume	Median Annual FlowMean Annual FlowAmended APFD
Physical Form (channel and floodplain)	This index is under devel	opment
Vegetation (channel and floodplain)	This index is under development. Suggested indicators include: • Structural o Spatial extent of vegetation types o Spatial arrangement of vegetation types o Structure - canopy height - number of strata - cover density o Nativeness • Functional/process o Modification of microclimate o Recruitment and regeneration o Physiological status o Nutrient flux o Sediment flux o Water flux	
Floodplain	o Provision of habitat This index is under development	

Table 23. Suggested themes, indicators and measures for detecting change in condition of different regions of Lake Eyre Basin.

Theme and Attribute	Indicator	Measure
Flow and Flood		
Water use	Volume of water held in storage	Upstream water licensing information
		Upstream area (volume) of water stored, from satellite imagery
	Percent of flow diverted	Water licensing information
		Area (volume) of water diverted, from satellite imagery
Hydrological variability	Flow variability	Long-term variability (and changes in variability) in amplitude, frequency and duration of floods
		Long-term changes in variability of multi- annual flows
		Predictability analyses
Waterhole depth	Depth	Depth loggers at waterhole
Flood extent	Flood extent	Mapping flood extent with satellite imagery
Alluvial groundwater	Depth to alluvial groundwater	Site specific monitoring
Catchment and Physical Fo	rm	
Channel system integrity	Channel system integrity	Floodplain geomorphic complexity – remote sensing
		Channel complexity – remote sensing (aerial photography)
		Within waterhole complexity
Erosion potential and land use and landscape change	Erosion potential and land use change	Landscape function analysis (per veg cover change including salinisation)
Floodplain salinisation	Salinity scalds	Area of scalds from remote sensing
Riparian and Floodplain		
Riparian and floodplain	Vegetation biodiversity	Riparian & floodplain vegetation taxa richness
biodiversity		Riparian & floodplain vegetation functional diversity
	Bird biodiversity	Riparian (adapted Bryce, Kingston) & Waterbird (Kingsford) diversity
Riparian vegetation	Riparian composition & extent	Riparian cover index
condition		Riparian SLATS
	Riparian recruitment & regeneration	Riparian regeneration index

Theme and Attribute	Indicator	Measure
	Riparian percent exotics	Riparian NATIVES index
Floodplain¹ vegetation condition	Floodplain composition & extent	Floodplain cover index
		Floodplain SLATS
	Floodplain recruitment & regeneration	Floodplain regeneration index
	Floodplain percent exotics	Floodplain NATIVES Index
Waterholes & Wetlands		
Waterhole & wetland	Macroinvertebrate assemblage	Taxa richness
biodiversity	composition	Modified SIGNAL score
		AusRivAS scores
	Fish assemblage diversity	% Native species
		% Exotic individuals
		Fish assemblage O/E
		Fish recruitment
	Colonial water bird breeding – applies only to wetlands	Breeding success
	Iconic species	Species under threat need further consideration e.g. frogs, turtles, water rat, monitor, brush tail possum, Cooper Creek catfish etc.
	Mound springs – handled under GAB process	
	Cane toads	• presence/absence
Waterhole & wetland	Water quality	Conductivity (salinity)
water quality		• pH
		Turbidity
		Diel range in dissolved oxygen
		Diel range in water temperature
	Nutrients	Total N and P and available nutrients
Waterhole process & function	Ecosystem processes	Benthic metabolism
		Algal biomass & composition
		Carbon & nitrogen stable isotope analysis

^{1.} In the Headwater (HW) region, as true floodplains do not exist, the measures would be undertaken on catchment vegetation.

7.5 Marine and Tropical Sciences Research Facility

The Marine and Tropical Sciences Research Facility (MTSRF) is supporting many projects to research the key environmental challenges facing the Great Barrier Reef and its catchments, tropical rainforests, including the Wet Tropics World Heritage Area, and the Torres Strait. Under the program heading 'Halting and reversing the decline of water quality', the project 'Freshwater indicators and thresholds of concern' is identifying and investigating appropriate indicators of waterway health to determine threshold levels at which water or habitat quality may become an ecological concern. Following a process of identification and elimination, a set of indicators (Table 24) has been tested against natural and disturbance gradients to determine if they are appropriate measures of condition in the wet tropics (R. Pearson pers. comm.). Further work may identify more biophysical indicators for testing.

7.6 Ecosystem Health Monitoring Program

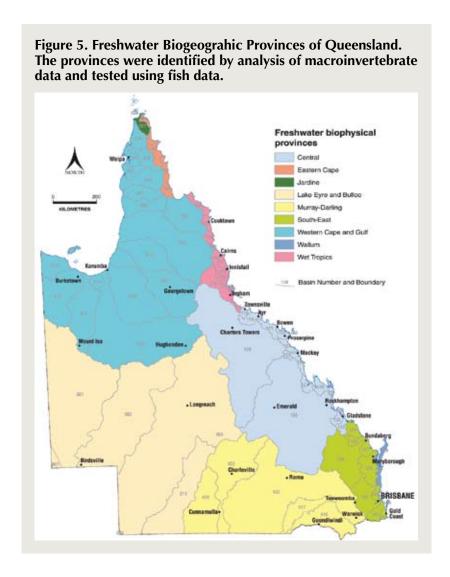
The Freshwater Ecosystem Health Monitoring Program (EHMP) was established in Southeast Queensland to provide an objective assessment of the health of waterways throughout the region (Abal et al. 2005). The information collected is used to advise councils and land managers on areas of declining health, report on the effects of different land uses, and to evaluate the effectiveness of management actions aimed at improving and protecting aquatic ecosystems. Comprehensive indicators were developed that relate aquatic health to disturbance pressures through themes of fish, invertebrates, physico-chemical, eco-processes and nutrients. (Table 25). Monitoring is undertaken twice a year (autumn and spring) and the catchment results are disseminated to the general public via a 'report card'.

Table 24. Biophysical indicators identified and tested against natural and disturbance gradients in the wet tropics for MTSRF.

Theme	Indicator
Geomorphology	Bank stability
	Degree of channel migration
	Sediment characteristics
	Bank modifications (levees etc)
	Flow modifications
Riparian vegetation	% cover relative to natural
	% native vegetation
	% weed cover
	Width
	Disturbance score
Physical, chemical	• Flow
properties of water body	Temperature
Sody	Light environment
	Conductivity
	pH cycling
	Clarity
	Dissolved oxygen cycling
	Nitrate concentration
Aquatic macrophytes	Total cover
	Species richness
	% submerged species
	% emergent species
	% native species
	% alien species
	% grass species
Aquatic invertebrates	Species richness
	Family richness
Fish	Observed vs expected species richness and assemblage composition
	Number of alien species
	Percentage of fish species that are alien
	Percentage of total fish abundance represented by alien species

Table 25. Ecosystem Health Monitoring Program freshwater indicators and measures.

Indicator	Measure
Physical/chemical	• pH
	Conductivity
	Diel (24hr) range and maximum temperature
	Diel range and minimum dissolved oxygen
Nutrient cycling	Ratio of 15N to 14N stable isotope
	Algal bioassay
Ecosystem processes	Growth rate of algae
	Ration of 13C to 12C stable isotopes
	Respiration (R24)
	Gross Primary Production (GPP)
Aquatic macroinvertebrates	Number of macroinvertebrate taxa
	EPT richness (number of stonefly, mayfly and caddisfly families)
	SIGNAL score
Fish	Proportion of native species expected
	Ratio of observed to expected species
	Proportion of alien fish


7.7 Ambient Biological Monitoring and Assessment Program

The Ambient Biological Monitoring and Assessment Program (ABMAP) is a statewide riverine monitoring program undertaken on an annual basis by the Department of Natural Resources & Water. The Queensland program commenced in 2001 and was based on the design of the National River Health Program (NRHP), a Commonwealth/State program which ran from 1994 to 2000 and developed a set of models (AusRivAS) to assess river health. The purpose of ABMAP is to monitor and assess the ecological

condition of Queensland's waterways to help guide natural resource management decisions. This is achieved through the use of aquatic macroinvertebrates as a biological indicator. In addition, physico-chemical water parameters are collected and extensive habitat information recorded.

Each year, two Freshwater Biogeographic Provinces (Figure 5) are selected for monitoring.

Macroinvertebrates are collected using Queensland AusRivAS collecting protocols (NRW 2005; 2006a-i).

7.8 Surface Water Ambient Network

The Surface Water Ambient Network (SWAN) is a statewide water quality monitoring program undertaken by the Department of Natural Resources & Water. Water samples are collected routinely from sites that are visited for stream gauging and analysed for physico-chemical properties and nutrients. Over 200 sites are visited up to four times a year. This information is used to evaluate the suitability of surface waters according to the methods described by ANZECC & ARMCANZ (2000) for the protection of slightly to moderately disturbed aquatic ecosystems (Grinter & Clarke 2006).

7.9 AquaBAMM

AquaBAMM (Aquatic Biodiversity Assessment and Mapping Method) is a decision support method developed by Queensland EPA to assess conservation values in aquatic ecosystems through existing information and expert opinion. The riverine component of AquaBAMM has been trialled and is now being applied to riverine systems in Queensland (Clayton et al. 2006). Whilst not strictly a method for determining resource condition, rather conservation values, criteria, indicators and measures are identified in the method. A comprehensive list of indicators and measures for riverine wetlands has been identified, based on information and datasets readily available in Queensland (Table 26) (P. Clayton pers. comm.).

Table 26. AquaBAMM criteria, indicators and measures for riverine wetlands.

Indicators	Measures	
1. Naturalness Aquatic (Diagnostic)		
Exotic flora/fauna	Presence of 'alien' fish species within the wetland	
	Presence of exotic aquatic and semi-aquatic plants within the wetland	
Aquatic communities/assemblages	SOR¹ aquatic vegetation condition	
	• SIGNAL2² score (Max)	
	• AUSRIVAS³ score – Edge (Min band)	
	• AUSRIVAS³ score – Pool (Min band)	
	• EPT ⁴ score (Max	
	• Wetland condition – as measured by an acknowledged condition metric	
Habitat features modification	SOR¹ bank stability	
	SOR¹ bed & bar stability	
	SOR¹ aquatic habitat condition	
	Presence/absence of dams/weirs within the wetland	
	Inundation by dams/weirs (% of waterway length within the wetland)	
	Snag removal within the wetland	
	% area of remnant wetland relative to preclear extent for each spatial unit	
	 Presence of dredging/extraction (including for navigation) and channel modification within the wetland 	

Indicators	Measures
Hydrological modification	APFD ⁵ score – modelled deviation from natural under full development
	 Percent natural flows – modelled flows remaining relative to predevelopment
	Percent no flows – modelled low flows relative to predevelopment
	Mean annual extraction (or addition) (ML/year)
Water quality	Median Total Phosphorous (ug/L)
	Median Total Nitrogen (ug/L)
	Median Turbidity (ug/L)
	Median Conductivity (ug/L)
	Median pH
	Dissolved Oxygen (mg/L) within guideline limits (expert panel list/ discussion)
	Presence of harmful algal blooms (expert panel list/discussion)
	Water quality index/score – an acknowledged metric calculated considering local, state or national water quality guidelines.
2. Naturalness Catchment (Dia	gnostic)
Exotic flora/fauna	Presence of exotic terrestrial plants in the assessment unit
Riparian disturbance	% area remnant vegetation relative to preclear extent within buffered riverine wetland or watercourses
	Total number of Regional Ecosystems (RE) relative to preclear number of REs within buffered riverine wetland or watercourses
	SOR¹ reach environs
	SOR¹ riparian vegetation condition
Catchment disturbance	% 'agricultural' land-use area (i.e. cropping and horticulture)
	% 'grazing' land-use area
	• % 'vegetation' land-use area (i.e. native veg + regrowth)
	• % 'settlement' land-use area (i.e. towns, cities, etc)
	% area of known contaminated land adjacent to the wetland, measured within a 200 m buffer around the wetland
Flow modification	Farm storage (overland flow harvesting, floodplain ring tanks, gully dams) calculated by surface area
	% area of impervious surfaces within the assessment unit (typical of urban areas)

continued on next page

Table 26 continued from previous page

Indicators	Measures	
3. Diversity and Richness (Diagnostic)		
Species	Richness of native amphibians (riverine wetland breeders)	
	Richness of native fish	
	Richness of native aquatic dependent reptiles	
	Richness of native waterbirds	
	Richness of native aquatic plants (macrophytes)	
Communities/assemblages	Number of macroinvertebrate taxa (Family level taxonomy)	
	Vegetation richness represented by richness of REs along riverine wetlands or watercourses within a specified buffer distance from the stream	
	Native fish biotic index (observed : expected ratio)	
Habitat	SOR¹ channel diversity	
	• Richness of wetland types within the local catchment (e.g. SOR¹ sub-section	
	Richness of wetland types within the sub-catchment	
Geomorphology	 Richness of geomorphic features (i.e. features determined through a classification such as the GAR method) 	
4. Threatened Species and Ecos	ystems (Diagnostic)	
Species	 Presence of rare or threatened aquatic ecosystem dependent fauna species – NCAct⁶, EPBCAct⁷ 	
	 Presence of rare or threatened aquatic ecosystem dependent flora species – NCAct⁶, EPBCAct⁷ 	
Communities/assemblages	 Conservation status of wetland Regional Ecosystems – Herbarium biodiversity status, NCAct⁶, EPBCAct⁷ 	
5. Priority Species and Ecosyste	ems (Expert opinion)	
Species	Presence of aquatic ecosystem dependent 'priority' fauna species (expert panel list/discussion or other lists such as ASFB ⁸ , WWF ⁹ , etc)	
	Presence of aquatic ecosystem dependent 'priority' flora species (expert panel list/discussion)	
	 Habitat for, or presence of, migratory species (expert Panel list/ discussion and/or JAMBA¹⁰ / CAMBA¹¹ agreement lists and Bonn Convention) 	
	Habitat for significant numbers of waterbirds (expert panel list/discussion)	
Ecosystems	Presence of 'priority' aquatic ecosystem (expert panel list/discussion)	

Indicators	Measures
6. Special Features (Expert opinion)
Geomorphic features	Presence of distinct, unique or special geomorphic features (expert panel list/discussion)
Ecological processes	Presence of (or requirement for) distinct, unique or special ecological processes (expert panel list/discussion)
Habitat	Presence of distinct, unique or special habitat (including habitat that functions as refugia or other critical purpose) (expert panel list/discussion)
	Significant wetlands identified by an accepted method such as Ramsar, Australian Directory of Important Wetlands, Regional Coastal Management Planning, World Heritage Areas, etc.
	Ecologically significant wetlands identified through expert opinion and/ or documented study
Hydrological	Presence of distinct, unique or special hydrological regimes (eg. Spring fed stream, ephemeral stream, boggomoss) (expert panel list/discussion)
7. Connectivity (Expert opinion)	
Significant species or populations	The contribution (upstream or downstream) of the spatial unit to the maintenance of significant species or populations, including those features identified through Criteria 5 and/or 6 (expert panel list/discussion)
	Possibility for migratory or routine 'passage' of fish and other fully aquatic species (upstream, lateral or downstream movement) within the spatial unit
Groundwater dependent ecosystems	The contribution (upstream or downstream) of the spatial unit to the maintenance of groundwater ecosystems with significant biodiversity values, including those features identified through Criteria 5 and/or 6 (e.g., karsts, cave streams, artesian springs) (expert panel list/discussion)
Floodplain and wetland ecosystems	The contribution of the spatial unit to the maintenance of floodplain and wetland ecosystems with significant biodiversity values, including those features identified through Criteria 5 and/or 6 (expert panel list/discussion)
Estuarine and marine ecosystems	The contribution of the spatial unit to the maintenance of estuarine and marine ecosystems with significant biodiversity values, including those features identified through Criteria 5 and/or 6 (expert panel list/discussion)

^{1.}State of the Rivers; 2.Stream Invertebrate Grade Number – Average Level; 3.Australian River Assessment System; 4.Ephemeroptera, Plecoptera, Trichoptera; 5.Annual Proportional Flow Deviation; 6.Nature Conservation Act; 7.Environment Protection and Biodiversity Conservation Act 1999; 8.Australian Society for Fish Biology; 9.World Wildlife Fund; 10.Japan—Australia Migratory Bird Agreement; 11.China—Australia Migratory Bird Agreement.

7.10 Rapid Appraisal of Riparian Condition and Tropical Rapid Appraisal of Riparian Condition

The Rapid Appraisal of Riparian Condition (RARC) and the Tropical Rapid Appraisal of Riparian Condition (TRARC) are methods that have been developed to assess the health of riverine riparian zones (Jansen et al. 2005; Dixon et al. 2006). Both methods derive an index of condition using indicators to reflect functional aspects of the physical, community and landscape features of the riparian zone. These methods have been designed specifically for riverine riparian zones and can be used by operators with limited scientific training. Their

purpose is to inform land managers on the condition of their riparian zones and assist in their management.

The RARC method was developed for South-east Australia, and has shown a good negative relationship between grazing intensity and riparian condition. Testing of RARC in tropical areas of Australia showed that the relationships were not as strong, leading to the development of the TRARC method. The indicators and measures for RARC are listed in Table 27; TRARC indicators and measures are in Table 28.

Table 27. RARC sub-indices and indicators.

Sub-Index	Indicator
Habitat	Longitudinal continuity of riparian vegetation
	Width of riparian vegetation
	Proximity to nearest patch of intact native vegetation
Cover	Canopy (>5 m tall)
	Understorey (1-5 m tall)
	Ground (<1 m tall)
	Number of layers
Natives	Canopy (>5 m tall)
	Understorey (1-5 m tall)
	Ground (<1 m tall)
Debris	Leaf litter
	Native leaf litter
	Standing dead trees (>20 cm dbh)
	Hollow-bearing trees
	• Fallen logs (>10 cm dbh)
Features	Native canopy species regeneration (<1 m tall)
	Native understorey regeneration
	Large native tussock grass
	• Reeds

Table 28. TRARC sub-indices, indicators and measures.

Sub-Index	Indicator	Measure
Plant Cover	Canopy cover	Percentage cover of trees >5 m tall
	Canopy continuity	Percentage of longitudinal bank covered with trees >5 m tall
	Midstorey cover	Percentage cover of vegetation 1.5 – 5 m tall
	Understorey cover	Percentage cover of vegetation <1.5 m tall
	Grass cover	Percentage cover of grass
	Organic litter	Percentage cover of leaves and fallen branches <10 cm diameter
	• Logs	Abundance of logs >10 cm diameter
Regeneration	Canopy health	Appearance of canopy health
	Large trees	Abundance of trees with trunk diameter >30 cm
	Tree size classes	Variation in tree trunk width
	Dominant tree regeneration	Abundance of juveniles 0.3–3 m
	Other tree regeneration	Abundance of juveniles 0.3–3 m
Weeds	Canopy weeds	Proportion of weed versus native canopy cover
	Midstorey weeds	Proportion of weed versus native midstorey cover
	Understorey weeds	Proportion of weed versus native understorey cover
	Grass weeds	Proportion of weed versus native grass cover
	Organic litter weeds	Proportion of weed versus native organic litter cover
	High impact weeds	Presence of listed weed species
	High impact weed distribution	Distribution pattern of listed weed species within the riparian transect
Erosion	Exposed soil	Percentage cover of exposed soil/sand/ash
	Exposed tree roots	Extent of exposed roots due to erosion
	Slumping	Combined width of slumps
	Gullying	Combined width of gullies
	Undercutting	Combined width of undercuts
Pressure	Bank stability	Bank slope
		Instream structures: abundance of human-built instream structures
		Dominant and maximum bank sediment size
	Animals: managed and unmanaged	Extent of impact due to managed animals (e.g. stock) and unmanaged animals (e.g. feral pigs)
	• Fire	Time since fire and spatial impact of fire
	Tree clearing	Proximity of clearing to river bank and width of clearing
	Flow regime	Reduction of plant regeneration due to large dams
	Other	Extent of damage from human built structures and activities

Estuarine wetlands are those wetlands that have oceanic water that is at least occasionally diluted with freshwater runoff from the land. Within channels, that is generally below the point of the upstream limit of tidal influence at mean high water springs (MHWS). Outside channels (e.g. within an embayment, at a river mouth), the upper limit of an estuarine system is defined as the landward limit of tidal inundation or highest astronomical tide (HAT) (EPA 2005b).

Marine wetlands are open ocean overlying the continental shelf and its associated high energy coastline down to a depth of 6 m below lowest astronomical tide (LAT), where salinities exceed 33 ppt with little or no dilution outside the mouths of estuaries. The marine system also includes shallow coastal bays with no appreciable freshwater inflow, coasts with exposed rocky islands that provide the mainland with little or no shelter from wind or waves, and coral reefs. Marine habitats are exposed to the waves and currents of the open ocean, and the water regimes are determined by the ebb and flow of oceanic tides (EPA 2005b).

8.1 Natural Resource Management (NRM) Resource Condition Indicators

In 2004 the CRC Coastal Zone proposed a new set of resource condition indicators for the Estuarine, coastal and marine (ECM) Matter for Target in the draft document Users' Guide to Estuarine, Coastal and Marine Indicators for Regional NRM Monitoring (Scheltinga et al. 2004). The work was commissioned by the Australian Government to inform the Monitoring and Evaluation Working Group (MEWG) and the Intergovernmental Coastal Advisory Group (ICAG). The purpose of the review was to identify indicators that are relevant to NRM regions to meet monitoring needs specified under the Natural Heritage Trust and the National Action Plan for Salinity and Water Quality (NAP). A total of 31 indicators were identified (Table 29), as well as a pressure, stressor, response framework for selecting indicators, which relied upon conceptual models of stressors to illustrate the relationships between the natural resources, ecological processes, and stressors. Stressors can be physical, chemical or biological components of the environment that can be altered by human or other activities (pressures), resulting in degradation to natural resources (response).

Table 29. Current recommended indicators for Estuarine, Coastal and Marine Matter for Target.

Indicator Heading	Recommended Indicators
Estuarine, coastal and marine habitat extent and distribution (Indicator Status: For Advice)	 Algal blooms (Indicator Status: For advice) Animal disease/lesions (Indicator status: for advice) Animal kills (Indicator Status: For advice) Animal or plant species abundance (Indicator Status: For advice) Animals killed or injured by litter (entanglement, starvation, suffocation) (Indicator Status: For advice) Benthic microalgae biomass (in intertidal sand/mudflat communities) (Indicator Status: For advice) Biomass, or number per unit area, of epiphytes (in seagrass or mangrove communities) (Indicator Status: For advice) Biomass, or number per unit area, of macroalgae (in rocky shore, rocky reef or coral reef communities) (Indicator Status: For advice)

The second secon	

Indicator Heading	Recommended Indicators
Indicator Heading	 Chlorophyll a (Indicator Status: For advice) Coral bleaching (Indicator Status: For advice) Death of marine mammals, endangered sharks and reptiles caused by boat strike, shark nets or drum lines (Indicator Status: For advice) Dissolved Oxygen (DO) (Indicator Status: For advice) Estuary mouth opening/closing (Indicator Status: For advice) Extent/distribution of key habitat types (Indicator Status: For advice) Extent/distribution of subtidal macroalgae (Indicator Status: For advice) Occurrence of imposex (Indicator Status: For advice) Pest species (number, density, distribution) (Indicator Status: For advice) pH (Indicator Status: For advice) Presence/extent of litter (Indicator Status: For advice) Salinity (Indicator Status: For advice)
	 Seagrass: depth range (Indicator Status: For advice) Sedimentation/erosion rates (Indicator Status: For advice) Targeted pathogen counts (Indicator Status: For advice) Total nutrients in the sediment WITH dissolved nutrients in the sediment (Indicator Status: For advice) Total nutrients in the water column WITH dissolved nutrients in the water
	 column (Indicator Status: For advice) Toxicants in biota (Indicator Status: For advice) Toxicants in the sediment (Indicator Status: For advice) Turbidity/water clarity (Indicator Status: For advice) Water-current patterns (Indicator Status: For advice) Water soluble toxicants in the water column (Indicator Status: For advice) Water temperature (Indicator Status: For advice)
Estuarine, coastal and marine habitat condition	Condition of habitat at significant sites of selected estuarine, coastal and marine habitats (Indicator Status: Unclear)

Due to the disbandment of the MEWG in 2004, the status of this list has remained as 'For advice'. The NLWRA took over the tasks of the MEWG and the review of the ECM indicators was resumed with a national workshop in 2006. A nationally agreed set of 19 indicators was developed at the workshop (Souter & Mackenzie 2006) and further refined by ICAG (Table 30) (R. Thorman pers. comm.; Scheltinga & Moss in prep.a). Trials of the indicators commenced in Tasmania, South Australia and Queensland in 2006. The original 2004 list, and associated methods, is still accessible on the Natural Resource Management website although it has been removed from the NLWRA resource condition indicators webpage in preparation for a new list of recommended indicators once the trials have finished.

Table 30. Proposed indicators for Estuarine, Coastal and Marine Matter for Target, and measures currently undergoing trials in Queensland (R. Thorman pers.comm.; Scheltinga & Moss in prep.a).

Indicator	Measures (Qld trials)	
Estuarine, coastal and marine habitat exter	nt and distribution	
Extent and distribution of key habitat types	Key habitat types:	
Estuarine, coastal and marine habitat cond	ition	
Biological Condition		
2 Algal blooms	 Presence of algal bloom based on regular visual observation. Species level identification of dominant species. 	
3 Animal or plant species abundance	Abundance and biodiversity of fish, crab and prawn.	
4 Chlorophyll a	Concentration of Chlorophyll a in the photic zone of the waterbody.	
5 Coral bleaching		
6 Mass mortality events	Presence of fish kill based on visual observation	
7 Pest species (number, density, distribution)	 Identify number, density and distribution of pest species – extent of each species should be categorised as: Uncommon Common but with no apparent ecological impact Common and with significant ecological impact Abundant 	
8 Targeted pathogen counts	Intestinal enterococci counts:	
	95 th value for intestinal enterococci/100 mL, based on a minimum of 5 samples	
9 Vertebrates impacted by human activities	Number of reported impact incidents for each species relative to estimated total local populations for each species.	
Physical/chemical condition		
10 Dissolved oxygen	Dissolved oxygen concentration in the surface water measured during the middle of the day and expressed as percent saturation.	
	Dissolved oxygen concentrations in surface waters measured just before daylight.	

Indicator	Measures (Qld trials)
11 Nutrients	Concentration of soluble or total Nitrogen or Phosphorus in a surface water sample
12 pH	pH of surface waters – collected throughout the waterbody at least once daily during the 4 days following an event and the lowest value of these to be recorded as the indicator result
13 Presence/extent of litter	Type and extent of litter
14 Salinity (EC)	Annual median salinity levels in the surface and bottom waters of the major functional zones of the waterbody under study
15 Sedimentation/erosion rates	
16 Shoreline position	
17 Temperature	
18 Toxicants (in water/sediments/biota)	Levels of toxicants in sediments in each major functional zone of the estuary or coastal waterbody
19 Turbidity/water clarity	(Measure not yet identified)

8.2 Stream and Estuarine Assessment Program (SEAP)

Sections 6.1 and 7.2 of this document discussed elements of the Stream and Estuarine Assessment Program (SEAP), which is under development by two Queensland Government agencies (Natural Resources & Water (NRW) and Environmental Protection Agency (EPA)). It will eventually replace the current state-wide water quality monitoring programs run by those agencies. It is a hypothesis-based program where conceptual models will be developed to explain how Queensland's aquatic ecosystems respond to particular human activities, and the biophysical changes to the aquatic environment resulting from the activities. NRW is developing the freshwater component of the program and EPA the estuarine.

The estuarine component of the SEAP has been developed in conjunction with the NLWRA review of Matters for Target (Section 8.1). Conceptual models of estuaries and coastal zones were developed by the CRC Coastal Zone (OzCoasts and OzEstuaries). These have been used to identify stressors and indicators that are currently being tested. SEAP development has

been slightly more intricate compared to the NRM resource condition indicators review, although the principles are the same. SEAP has developed conceptual models for stressors that are common in Queensland, and identified indicators for each phase of the models (pressure, stressor, response) (Table 31) (Scheltinga & Moss in prep.b). Four types of indicators have been identified:

- Human activities that result in a change to the stressor (i.e. the pressure).
- A direct measure of the stressor e.g. nutrient load entering a waterbody.
- The change in physical-chemical condition caused by the changing stressor (response).
- The change in biological condition observed as a result of the change in physical-chemical condition (response).

There may be many pathways in which a stressor may occur, hence many indicators may be identified. Many of the proposed SEAP indicators are the same as those identified for the NRM resource condition indicators review, and the proposed methods are comparable.

Table 31. Proposed SEAP stressors (and direct pressures on the system) and indicators for each phase of the models (Scheltinga & Moss in prep.b).

Pressure Indicators		Condition Indicators	
Stressor Source	Direct Pressure	Physical/Chemical	Biological
Aquatic Sediments (Sus	spended Sediment Loads)	
 Catchment land-use Percentage of catchment cleared Percentage length of river system with no riparian vegetation Presence of point sources Number of boats using estuary 	Monitored or modelled sediment loads entering the estuary (total diffuse and point sources) Occurrence of dredging in estuary	Secchi depth Turbidity	 Change in seagrass extent Percentage cover of seagrass. Change in mangrove extent
Bacteria/Pathogen (Bacteri	a/Pathogen Loads)	1	
 Occurrence of sewage treatment plants Occurrence of sewage overflow events Number of intensive animal production sites within catchment Number of septics within catchment 	None	Intestinal enterococci counts	None
Biota Removal or Disturba	nce		
 Occurrence of bait collecting in estuary Occurrence of trawling in estuary Number of boats moored in estuary Number of boats using estuary Recreational usage index Coastal population size Occurrence of dredging in estuary 	None	None	 Fish, crab and prawn abundance or biodiversity Vertebrates inadvertently impacted by human activities (not litter)

Pressure Indicators		Condition Indicators	
Stressor Source	Direct Pressure	Physical/Chemical	Biological
Number of recreational fishers using estuary	None	None	Fish, crab and prawn abundance or biodiversity
Number of commercial fishers using estuary			Vertebrates inadvertently impacted
Number of licensed collectors (of aquarium fish, shells, etc.) using estuary			by human activities (not litter)
Freshwater Flow Regime			
Number of times freshwater flow greater than estuary volume (complete estuary flush)	None	None	None
Percentage of median annual flow impounded and extracted			
Habitat Removal or Disturb	pance		
Number of impoundments without fish ladders	Percentage of estuarine riparian area modified	None	Change in seagrass extentChange in mangrove
Occurrence of dredging in estuary			extent
Percentage of catchment under aquaculture			Change in saltmarsh extent
Hydrodynamics			
Presence of entrance modifications	None	None	None
Presence of canals, piers, other estuary modifications			
Presence of tidal barrages			
Occurrence of dredging in estuary			

continued on next page

Table 31 continued from previous page

Pressure Indicators		Condition Indicators	
Stressor Source	Direct Pressure	Physical/Chemical	Biological
Litter			
 Catchment land-use Coastal population size Number of boats using estuary Recreational usage index Percentage of stormwater outflows within catchment using best management practices 	None	Presence of litter	Vertebrates killed by litter
Nutrients Loads			
 Catchment land-use Percentage length of river system with no riparian vegetation Occurrence of sewage treatment plants Occurrence of sewage overflow events 	Monitored or modelled nutrient loads entering the estuary (total diffuse and point sources)	 Nitrate Filterable reactive phosphorus Total nitrogen Total phosphorus 	 Chlorophyll-a Percentage epiphytic cover on seagrass Percentage macroalgal cover on coral reef Percentage macroalgal cover on mangrove pneumatophores
Organic Matter Loads			
 Catchment land-use Presence of point sources Occurrence of sewage overflow events Percentage of catchment under intensive livestock Percentage of river system affected by aquatic weeds 	• BOD ₅ load	Dissolved oxygen	Number of mass mortality events caused by low dissolved oxygen

<

Pressure Indicators		Condition Indicators	
Stressor Source	Direct Pressure	Physical/Chemical	Biological
Pest Species (Pest Species I	ntroduction)		
 Presence of pest species in adjacent areas 	None	Occurrence of pest species	None
 Presence of port/ harbour/marina 			
 Presence of aquaculture facilities using species non- native to the region 			
pH (Acid Sulphate Soil Run	n-off)		
 Areal extent of disturbed acid sulphate soils 	None	Minimum sustained pH values during the days following an inflow event	 Number of mass mortality events caused by low pH Occurrence of red- spot disease of fish
	Toxical	nt Loads	
 Catchment land-use Percentage of catchment under mining lease Presence of point sources Number of commercial boats 	Amount of oil spilled and number of oil slicks/spills reported	 Toxicants in the water column Toxicants in the sediment Toxicants in biota 	Number of mass mortality events caused by toxicants

8.3 EPA monitoring

Queensland EPA undertakes regular water quality monitoring in the rivers, estuaries and coastal areas of Eastern Queensland. The data collected is used by EPA to assist in managing those areas. The indicators and measures are listed in Table 32; methods are available from the Water Quality Sampling Manual (EPA 1999).

8.4 Ecosystem Health Monitoring Program

The estuarine/marine component of the Ecosystem Health Monitoring Program (EHMP) undertakes regular monitoring of several indicators that were selected on the basis of an understanding of Moreton Bay and its associated waterways, and the pressures and stressors in that environment. EHMP indicators and measures are listed in Table 33.

http://www.ehmp.org/estuarinemarine_monitoring.html

Table 32. Water quality indicators and measures collected by the EPA in rivers, estuaries and coastal areas of eastern Queensland.

Theme	Indicators and measures	
Nutrients	Nitrogen	
	o Organic	
	o Nitrate plus nitrite	
	o Ammonia	
	o Total	
	• Phosphorus	
	o Filterable reactive	
	o Total	
Microalgal Growth	Chlorophyll-a	
Water Clarity	Suspended solids Turbidity	
	Secchi depth	
Oxygen	Dissolved oxygen	
рН	• pH	
Salinity	Conductivity	
Toxicants in sediment	Trace elements in sediments	
	Pesticides in sediments	
Recreational health	Faecal coliforms	

Table 33. Indicators and measures used in the estuarine/marine component of the EHMP.

Theme	Indicators and measures
Water Quality	Physico-chemical
	o Turbidity
	o Dissolved oxygen
	o Salinity
	о рН
	o Water temperature
	Nutrients
	o Total nitrogen
	o Total phosphorus
	o Oxides of nitrogen
	o Ammonium
	o Filterable reactive phosphorus
	Water clarity
	o Secchi depth
	Phytoplankton abundance
	o Chlorophyll a
Sewage plume mapping	• Ratio of 14 ^N to 15 ^N (15 ^N)
Lyngbya monitoring	Presence/absence of Lyngbya
	Percent cover
	Substrate type (seagrass, bare etc)
	Biomass
Coral monitoring	Total percent cover
	Incidence of coral bleaching
Seagrass depth range and distribution	Difference between the upper and lower depth limit of the seagrass Zostera capricorni

8.5 Marine and Tropical Sciences Research Facility

The Marine and Tropical Sciences Research Facility (MTSRF) is supporting many projects to research the key environmental challenges facing the Great Barrier Reef and its catchments, tropical rainforests, including the Wet Tropics World Heritage Area, and the Torres Strait. Under the program heading 'Halting and reversing the decline of water quality', the project 'Marine and estuarine indicators and thresholds of concern' is investigating indicators of ecosystem health in response to changes in water quality. The estuarine and marine components are being treated separately by different researchers. The project is still in progress, and information is scarce.

The project proposal notes for the estuarine component of the project listed a set of indicators that would be investigated in the project (Table 34). The researchers are also compiling a literature review on estuarine indicators which is due for completion in mid-2007 (R. Connolly, Griffith University pers. comm.).

The marine component of the project is investigating potential water quality specific indicators for monitoring estuaries and inshore coral reefs. Although water quality project is still in progress, an interim list of indicators has been compiled for further investigation (Table 35) (Fabricius et al. 2007). Some have been highlighted as being particularly promising. The specificity of many of these indicators is poorly understood, as most research has been based on field assessments where many of the variables are highly correlated. Testing is currently underway to determine causality and threshold levels. This will enable measures to be combined in a composite indicator system which can distinguish between acute and chronic exposure to stressors.

Table 34. Estuarine indicators proposed for investigation in the MTSRF project: Marine and estuarine indicators and thresholds of concern.

Indicator group	Indicators and measures	
Water Quality	Salinity	
	Nutrients	
	Turbidity	
	Pesticides	
Fish	Community analysis	
	Morphometric measures (length, weight, etc)	
	Growth index on juveniles (RNA:DNA ratio)	
Crabs	Hepato-somatic index on mud crabs and grapsid crabs	

8

Table 35. Potential water quality indicators for estuaries and inshore coral reefs of the Great Barrier Reef.

Indicator group	Measure	Indicator for
Water Quality	Water column chlorophyll	Nutrients
	Suspended solids	Resuspension of old seafloor
		Newly imported sediments
	Dissolved nutrients	Upwelling
		Import through rivers
	Stable isotopes in DOC and DON	River imports vs upwelling
		Plant origin
Light	Light attenuation	Turbidity
		Suspended solids
	Secchi disc	Turbidity
		Suspended solids
Reef sediments	Amount and composition (sediment traps)	Resuspension
		Newly imported sediments
	Grain size (sediment surface samples)	Wave exposure
		Newly imported sediments
	Colour	• CaCO ³
		Organics
		Terrestrial vs marine sources
	Sediment nutrients, organic contents, chlorophyll	Organics
		Terrestrial vs marine sources
	IPAM, PAM of microphytobenthos communities	Benthic productivity
		Light
		Nutrients
		Others?
Reef biofilms	Foraminifera	Nutrients
		Light
		Organic enrichment
		Others?
	Diatoms	Nutrients
		Light
		Others?
	Bacteria	• ?

Table 36. Potential indicators for determining coral reef health in the Great Barrier Reef (Sweatman 2007).

Indicator Headings	Indicators
Reef Structure	
Biodiversity and community structure	Hard coral cover (total)
	Hard coral cover (diversity)
	Soft coral cover (total)
	Macroalgae
	Coral fish abundance
	Coral fish diversity
	Rugosity
	Focal species (iconic/long replacement time)
	Large Porites
	Dugong
	• Turtles
	Barramundi cod
	Maori wrasse
	• Sharks
	Bolbometopon
Abiotic factors	Sea surface temperature (SST)
	Salinity
	Chlorophyll a / Ocean colour
	Turbidity
	Sedimentation
	Pesticides
	Year of last cyclone
Habitat extent	Area of coral reef
	Area of mangroves
	Seagrass (extent and density)
Reef Function	
Reproduction/recruitment	Coral size frequency (inshore to genus, 5 size categories)
	Coral settlement
	Coral recruitment (juveniles)
	Fish size frequency
	Fish recruitment

Indicator Headings	Indicators
Coral mortality	Recent partial mortality (esp massives)
	Coral disease prevalence
	Bleaching prevalence
	Time since last bleaching
	Crown-of-thorns starfish (COTS)
	COTS outbreak status
	Time since COTS outbreak
Herbivory	Herbivorous fish abundance and composition
Interactions and Risk	
Tourism/coastal development	Human sewage biomarkers
	Coral damage index e.g. ship grounding, anchor damage
	Tourism index (EMC)
	Coastal development index (remote sensing, population, marina approvals)
	Recreation (boat registrations, diver days)
Agriculture and inland runoff	Pollutant accumulation (passive sampling, estuarine fish biomarkers)
	Coral physiological indicators (e.g. coral colour)
	Modified FORAM index (nutrient loading)
	Land use change (clearing, fertiliser and pesticide use, wetland areas)
Fishing	Abundance and size of targeted finfish species (incl harvest spp)
	Red throat emperor density and biomass
	Trochus
	Beche-de-mer
	Tropical rock lobster
	Number of recreational fishers
	Catch and effort (incl trawl and recreational)
	Spawning aggregations
	By-catch
Indigenous use	Number of indigenous agreements/TUMRAs
Climate change	GBRMPA Reef Temp heat stress predictions
	Bleaching surveys
Introduced marine pests	Distribution, abundance and risk

Table 37. Key indicators identified by the Mesoamerican Indicator Framework for assessing the health of Central American reefs.

Indicator Headings	Indicators
I. Reef Ecosystem Structure	
Biodiversity	Biodiversity
	Fish diversity
	Focal species (threatened and endangered species)
Community structure	Coral cover
	Coral:algal cover
	Fish abundance
	Rugosity
Abiotic factors	Water quality (temperature, salinity, transparency)
	Ocean colour
	Sedimentation rates
Habitat extent	Coral reef extent
	Mangrove extent
	Seagrass extent
II. Reef Ecosystem Function	
Reproduction/recruitment	Coral recruitment
	Coral size frequency
	Fish recruitment
	Fish size frequency
Coral condition	Coral mortality
	Coral disease prevalence
	Coral bleaching prevalence
Reef accretion bioerosion	Coral growth
	Number of bioeroders on corals
	Net reef accretion
Herbivory	Herbivorous fish abundance
	Diadema abundance
	Fleshy macroalgal index
	Fish bite rates
	Green turtle abundance

<

Indicator Headings	Indicators
III. Threats/Drivers of Change (natural an	d anthropogenic)
Tourism/coastal development	Human sewage biomarkers
	Tourism index
	Coastal development index
	Land-use change footprint
Agriculture and inland runoff	Contaminant accumulation (sediment and biota)
	Molecular biomarkers of pollutants
	FORAM index (nutrient loading)
Overfishing	Fish density and size
	Conch/lobster abundance
	Spawning aggregations
	% fishers with alternative livelihood options
Global climate change	Biomarkers of stress
	FORAM index of UV stress
	Coral bleaching index
	Bleaching resistance/resilience ranking
IV. Social well-being	
Human health	Contaminant accumulation (human breast milk)
	Cholera
	Safe water/sanitation
	Reproductive health index
Economic	Stratification of wealth
	Adjusted net savings
	% income from reef
	Environmental sustainability index (ESI)
Cultural integrity	• # ethno-languages
	Net in/out migration
	Gender and cultural equality
	Human development index
Policy and law	Area under protection
	MPA effectiveness ratings
	World Bank governance indicators

MANAGE TO STATE OF THE STATE OF

continued on next page

Table 37 continued from previous page

Indicator group	Measure	Indicator for
Barramundi in estuaries	EROD	PAHsPCBsDioxins
	DNA damage	Several stressors
	RNA-DNA ratio	Multiple stressors
	AchE	Organophosphorus
		Carbamate insecticides
	Fluorescent aromatic compounds	Metabolites of PAHs
	Condition factor	• Stress
		• Fitness
Coral physiology	RNA/DNA	• Light
		• Others?
	Tissue thickness	• Light
		Nutrients
		• Others?
	Coral colour	• Light
		Nutrients
		Other stress conditions (e.g. temperature)
	IPAM or PAM, zooxanthellae density, tissue chlorophyll concentration	• Light
		Nutrients
		Other stress conditions
	Bumpiness in massive <i>Porites</i>	Sedimentation
		Disturbance
		• Light
		Others?
Reef communities	Macro-bioeroders in <i>Porites</i>	Particulate nutrients
		Others?
	Lower depth limit of reef development	• Light
		Sedimentation

<

Indicator group	Measure	Indicator for
	Hard coral richness	LightSedimentationOrganic enrichmentOthers?
	Octocoral richness	Suspended solidsWater clarity
	Density and species richness of coral recruits	SedimentationNutrientsLightOrganic enrichment
	Macroalgal biomass/cover, split by major taxonomic groups	 Nutrients Waves Herbivory Space availability Light Others?
	Macroalgal community composition	NutrientsWavesHerbivorySpace availabilityLightOther?
	Fish abundances (esp. herbivores)	 Turbidity Substratum structure Others?

Indicators of reef health are being investigated under the same MTSRF project. A draft report has been produced which provides a list of potential indicators for coral reef health on the Great Barrier Reef (Table 36) (Sweatman 2007). Data for the majority of the proposed indicators can be sourced from existing databases. The indicators were selected at a workshop for scientists and managers at AIMS based on the MesoAmerican (MAR) Reef Initiative program, an international, multi-institutional effort to track the health of reefs off the coast of Mexico, Belize and

Honduras. A major component of the MAR program is to develop a set of ecological and socio-economic indicators to provide a consistent evaluation and reporting of reef health and quality of life (Table 37) (Health Reefs for Healthy People: Key Indicators – webpage accessed 15/5/2007).

8.6 Coastal CRC

The Coastal CRC produced many products, many of which are still available on the website. The work that informed the Matters for Target review of Estuarine, coastal and marine habitat indicators (from Scheltinga et al. 2004) can be found on the Ozcoasts website, as can a series of estuarine conceptual models. A major project reported on the assessment of historical changes in coastal environments (Duke et al. 2003; Schaffelke et al. 2005). It has allowed planners to assess impacts from current and proposed activities by providing a benchmark of changed based on community perspectives, coastal features, natural habitats, estuarine fisheries, fish communities and vegetated tidal habitats. A list of tidal wetland indicators (field and remote sensing) was proposed (Table 38). Although the indicators are not strictly indicators of condition, they can assist in pinpointing changes that have occurred in the past caused by anthropogenic impacts.

As can be seen in Table 38, many changes manifest in only a handful of impacts e.g. dieback or loss of vegetation can be the result of zonal shifts, storm damage, wrack accumulation, spill damage, and direct damage, to name a few. In order to assist operators to correctly match the impact with the cause, Duke et al. (2003) also developed two keys (ground and remote sensing) (Table 39).

Table 38. Proposed categories of tidal wetland change and indicators for assessing coastal and estuarine habitat (from Duke et al. 2003, Schaffelke et al. 2005).

Type of Change	Wetland Indicator Tool	Driver of Change		
A. Direct – Intended and obviously human related				
1. Reclamation loss. Replacement with structures and/or sites – ports, industrial, urban, canals.	Ground: Reported reclamation, constructed sea and canal walls. Remote: Geometric loss patterns in maps and photos.	Port, industry and urban development.		
2. Direct damage. Dieback/ damage/loss caused by cutting, root exposure, sediment disturbance, root burial, ponded pastures and agricultural encroachment.	Ground: Cut stumps, paths, vehicle tracks, exposed or buried roots, trampled substrate, compacted soil, structures blocking tidal exchange, dead/sick trees.	Access to, construction of retaining walls for ponded pastures and tide blocking drains.		
	Remote: Dieback/loss radiating from access points and near retaining walls.			
B. Direct – Unintended and obviously human related				
3. Restricted tidal exchange. Dieback/damage associated with construction and development projects often resulting in impoundment inundation of breathing roots.	Ground: Pooled low tide water, restricted water flow, delayed tidal exchange, stagnant water, dead/damaged trees. Remote: Dieback/loss near reclamation and constructed levees and banks.	Constructions, like roads and seawalls, altering water flow and tidal exchange.		

Type of Change	Wetland Indicator Tool	Driver of Change		
4. Spill damage. Dieback/damage following incidents/accidents involving spills of toxic chemicals which smother breathing surfaces	Ground: Reported spill incident, black tidal rings around stems, chemical (oil) in sediments, oily smell, dead/sick trees.	Spillage of toxic chemicals, oil spills.		
	Remote: Dieback/loss along tidal contours.			
C. Indirect – Unintended and less obviously human related				
5. Depositional gains and losses e. g. at estuary mouths and areas behind groins and training walls,	Ground: Colonisation downstream on banks, dieback with stream edge erosion or deposition.	Catchment vegetation clearing, soil disturbance, and construction of river/shoreline training walls.		
dieback/damage associated with sediment burial.	Remote: 'Island' appearances, plus edge gains and losses along water margins near mouth and along sand/beach ridges.			
6. Nutrient excess. Dieback/ damage associated with excess algal growth on breathing roots.	Ground: Nutrients in water and sediment, foliage uptake of nitrogen, increased plant growth, excess macroalgae on exposed roots, pooled low tide water, dead/sick trees.	Inputs of fertiliser and sewage.		
	Remote: Loss of inner stands.			
7. Species-specific effect. Dieback/ damage of species sensitive to toxic chemicals.	Ground: Toxic chemicals (herbicide) in water and sediment, epicormic sprouting, dead/sick trees.	Inputs of toxic chemicals e.g. in catchment runoff.		
	Remote: Affects only select species.			
D. Not obviously human related				
8. Wrack accumulation. Dieback/ damage associated with build-up of beach wrack on breathing roots and localised impoundment.	Ground: Wrack of dead algae (e.g. Lyngbya) or seagrass on roots, blocked tidal exchange, pooled water, dead/sick trees	Post-storm and algal blooms debris accumulation, possibly associated with poor water quality.		
	Remote: Dieback/loss patches in beach and exposed stands.			
9. Herbivore/insect attack. Dieback/damage associated with excessive herbivore/insect attacks	Ground: Defoliated trees, insect frass on forest floor, insect presence, dead/ sick trees.	Effects on herbivore/insect, possibly associated with stressed habitat.		
on foliage or tree stems.	Remote: Patches of low density canopy foliage and dieback/loss.			
10. Storm damage. Dieback/ damage associated with severe storm activity and incidents.	Ground: Reported storm, damaged bark and foliage, exposed roots, broken stems, up rooted trees, sheltered survivors, dead/sick trees.	Severe storms, cyclonic winds, strong wave activity, high stream flows, lightning.		
	Remote: Dieback/loss in patches or gaps.			

Table 38 continued from previous page

Type of Change	Wetland Indicator Tool	Driver of Change
11. Ecotone shift. Dieback/damage associated with climate change – shifts within the tidal zone.	Ground: Bands of dieback within mangrove zone, along saltpans, recruitment into saltpans.	Climate (rainfall) change affected by local and/or global factors.
	Remote: Dieback/loss and gains along tidal contours in tidal zone.	
12. Zonal shift. Dieback/damage associated with sea level change in the entire tidal wetland (mangrove/saltmarsh) zone.	Ground: Reported sea level change – landward: mangrove recruitment and terrestrial dieback; seaward: eroded trees and losses	Sea level change affected by local and/or global factors.
	Remote: Dieback/loss and gains at seaward and landward margins of tidal zone.	

Table 39. Keys to assist identification of types of change in tidal wetland habitats (Duke et al. 2003).

Key based on ground observations Extraneous material present _________go to 4 No extraneous material present go to 6 Oil slick marks as rings around tree stems and above-ground roots, plus residual Wrack (e.g. seagrass, Lyngbya) present, associated with impoundment(8) Wrack Accumulation Trees with normal appearance and diebackgo to 9 Epicormic sprouts, species-specific dieback (notably Avicennia sp.), growth Notable damage effects in canopy foliage, branches, stems on the groundgo to 8 Defoliated canopy, leaf feeding scars, obvious frass on forest floor(9) Herbivore/Insect Attack Damaged bark, broken limbs, scars & damage on 'weather' side of trees......(10) Storm Damage

9.	Recruitment, new stands, encroachment landward or seaward, associated with dieback	go to 10
9.	Little or no recruitment, associated construction works	(3) Restricted Tidal Exchange
10.	Orientated along upstream-downstream gradient, estuary tributaries and river mouths	.(5) Depositional Gains and Losses
10.	Orientated along tidal contours, parallel to land and sea margins	go to 11
11.	Associated with mangrove to salt marsh-saltpan ecotone	(11) Ecotone Shift
11.	Associated with mangrove-seawater plus mangrove-terrestrial zone edge	es(12) Zonal Shift
Key	based on remote sensing observations	
1.	Gains shown as patches of small, densely packed trees	go to 2
1.	Dieback of trees or patches of trees, plus stands with low density canop	iesgo to 3
2.	Gains along the waters' edge, sometimes as 'islands'	.(5) Depositional Gains and Losses
2.	Gains landward (as encroachment) and losses seaward, or vice versa	(12) Zonal Shift
3.	Partial canopy loss of individual trees, low canopy density	(9) Herbivore/Insect Attack, or
		(4) Spill Damage (sublethal effect)
3.	Complete canopy loss of individual trees (dieback death)	go to 4
4.	Individual trees, 'freckled' effect (dead Avicennia sp.)	(7) Species-specific Effect
4.	Whole stands, or clusters of trees	go to 5
4. 5.	Whole stands, or clusters of trees	
		go to 6
5.	Geometric boundaries, straight lines	go to 6
5. 5.	Geometric boundaries, straight lines No geometric patterns	go to 6
5.5.6.	Geometric boundaries, straight lines No geometric patterns Entire area and boundaries with geometric patterns	
5.5.6.6.	Geometric boundaries, straight lines No geometric patterns Entire area and boundaries with geometric patterns Some boundaries not geometric, nearby geometric	
5.5.6.7.	Geometric boundaries, straight lines No geometric patterns Entire area and boundaries with geometric patterns Some boundaries not geometric, nearby geometric Areas cut-off from sea/water edge	
5.5.6.7.7.	Geometric boundaries, straight lines No geometric patterns Entire area and boundaries with geometric patterns Some boundaries not geometric, nearby geometric Areas cut-off from sea/water edge Areas with access points, roads, paths	
5.5.6.7.8.	Geometric boundaries, straight lines No geometric patterns Entire area and boundaries with geometric patterns Some boundaries not geometric, nearby geometric Areas cut-off from sea/water edge Areas with access points, roads, paths Non-defined patches of dead trees	
 5. 6. 7. 8. 	Geometric boundaries, straight lines	
5. 5. 6. 7. 8. 8. 9.	Geometric boundaries, straight lines	
5. 5. 6. 7. 8. 8. 9. 10.	Geometric boundaries, straight lines No geometric patterns Entire area and boundaries with geometric patterns Some boundaries not geometric, nearby geometric Areas cut-off from sea/water edge Areas with access points, roads, paths Non-defined patches of dead trees Dead trees along apparent contours, curvi-linear pattern Associated with beach ridges, and in exposed stands Dead trees in patches, usual interior stands	
5. 6. 7. 8. 8. 9. 10.	Geometric boundaries, straight lines	

Estuarine and Marine Wetlands

8 Estuarine and Marine Wetlands

8.7 Seagrass Watch

Seagrass-Watch is a community assessment and monitoring program which aims to raise awareness on the condition and trend of nearshore seagrass ecosystems and provide an early warning of major coastal environment changes. The program commenced in Australia in 1998 and has expanded internationally to over 165 sites in 18 countries. Communities regularly monitor sites, collecting data on seagrass condition, extent and distribution (Table 40).

8.8 AquaBAMM

In conjunction with the development of freshwater riverine and non-riverine AquaBAMM indicators, a set of estuarine indicators has been proposed. As trialling has yet to occur, they are not ready for release. The first trials will occur in Southeast Queensland, beginning mid-2007.

Table 40. Measures collected by community groups in Seagrass-Watch (McKenzie et al. 2003).

Program	Measures
Mapping	Location of inner and outer edges of meadows
Monitoring	Photographic record
	Sediment composition
	Seagrass % cover
	Seagrass % composition
	Canopy height
	Algae % cover
	Epiphyte % cover
	Seagrass identification
	Depth
	Extent and distribution
Condition and resilience (requires expert	Seed reserves
assistance therefore specimens are collected for further treatment by laboratories)	Carbohydrate reserves
larate acamenes, lassiatories,	Amino acid composition
	Photosynthesis capability
	Seed viability
	• Ratio of ¹⁴ N to ¹⁵ N (σ ¹⁵ N) (sewage impact)

Lacustrine wetlands e.g. lakes, are broadly described as being situated in a topographic depression or a dammed river channel, having sparse vegetation coverage (less than 30 percent of their coverage area is made up of vegetation such as trees, shrubs or persistent emergent vegetation), and the total area exceeds 8 ha. Similar habitats less than 8 ha are also included if active wave-formed or bedrock shoreline features makes up all or part of the boundary, or their depth is greater than 2 m (Cowardin et al. 1979). Ocean-derived salinity is always less than 0.5%.

Palustrine wetlands, typically described as swamps, bogs, marshes and prairies, are dominated by trees, shrubs, persistent emergents, emergent mosses, and lichens, and the waters contain less than 0.5% of ocean-derived salts. Palustrine wetlands may include wetlands lacking vegetation if that wetland has the following characteristics: active waves are formed or bedrock features are lacking, water depth in the deepest part of the basin is less than 2 m at low water, and salinity is still less than 0.5% from ocean-derived salts.

The EPA published a series of Management Profiles for major wetland types found in Queensland. They are available for download from the EPA website:

http://www.epa.qld.gov.au/nature_conservation/habitats/wetlands/wetland_management_profiles/.

9.1 Natural Resource Management (NRM) Resource Condition Indicators

Under the NRM Monitoring and Evaluation Framework (NM&EF), wetlands are identified as those bodies of water that are generally characterised as being lacustrine or palustrine in the literature i.e. lakes (lacustrine) and swamps, marshes, bogs (palustrine). The current wetland NRM resource condition indicators are listed under the Inland Aquatic Ecosystems Integrity Matter for Target (Wetland ecosystem extent and distribution and Wetland ecosystem condition) (Table 41). These indicators are currently undergoing review by the NLWRA as part of a system-wide review in preparation for the second Audit.

Table 41. Current recommended indicators for wetland (lacustrine and palustrine) Matter for Target.

Indicator Heading	Recommended Indicators
Wetland ecosystem extent and distribution	Extent of regionally significant wetlands (Indicator Status: Unclear)
Wetland ecosystem	Condition of regionally significant wetlands based on:
condition (Indicator Status: For Advice)	Colour (Indicator Status: For Advice)
	Dissolved oxygen and temperature (Indicator Status: For Advice)
	Extent of inundation (Indicator Status: For Advice)
	Macroinvertebrate diversity and community composition (Indicator Status: For Advice)
	Macroinvertebrate index (Indicator Status: For Advice)
	Macroinvertebrate indicator species (Indicator Status: For Advice)
	Nutrients (Phosphorus and Nitrogen) (Indicator Status: For Advice)
	Transparency (Indicator Status: For Advice)
	Vegetation (Indicator Status: For Advice)
	Phytoplankton (Indicator Status: For Advice)

A project to review the wetland indicators (National Wetland Indicators Project) (Conrick et al. 2007) commenced in late 2006 and has been advised by the findings of this project, particularly the development of conceptual models (Section 9.4, below) and the wetland description tool (Section 4.3). The review has aligned with the concurrent development of a National Water Commission – Australian Water Resources 2005 project entitled 'A Framework for the Assessment of River and Wetland Health' (FARWH) which will provide methods for comparing and integrating existing river and wetland health outputs to facilitate national reporting from comparable state, territory, and regional NRM assessments e.g. the MDBC's Sustainable Rivers Audit, Victoria's Index of Stream Condition, Tasmania's CFEV project, and eventually Queensland's SEAP program.

FARWH is based on the premise that ecological integrity is the fundamental measure of river and wetland health and, although the ultimate measure of that integrity is damage to the biota, other components of the ecosystem are just as important, and should be included in an assessment of ecosystem health. It recommends selecting indicators under six themes although the selection of specific indicators is left to

the discretion of the investigator. A referential approach will be used to assess each indicator and the resulting indices will be aggregated and integrated to generate scores which can be reported and compared at the state and/or national level (Norris et al. 2007).

There were significant efficiencies to be made by the National Wetland Indicators Project in developing the wetland themes and indicators proposed by the FARWH and providing this information to the FARWH team for inclusion in their framework. The manner in which the two programs are structured, and how they propose to work together is shown in Figure 6 (Conrick et al. 2007).

A national workshop for the National Wetlands Indicator Project elected to retain the six themes as proposed in the FARWH (catchment disturbance, physical form, hydrological disturbance, water quality and soils, fringing zone, and aquatic biota) but also determined that, in order to be appropriate for wetlands, they needed slight modification. Consequently, the National Wetlands Indicator Project is recommending that the six wetland themes for the NM&EF Matter for Target will be catchment disturbance, physical form and processes, hydrological disturbance, water and soil quality, fringing zone, and biota (Conrick et al. 2007).

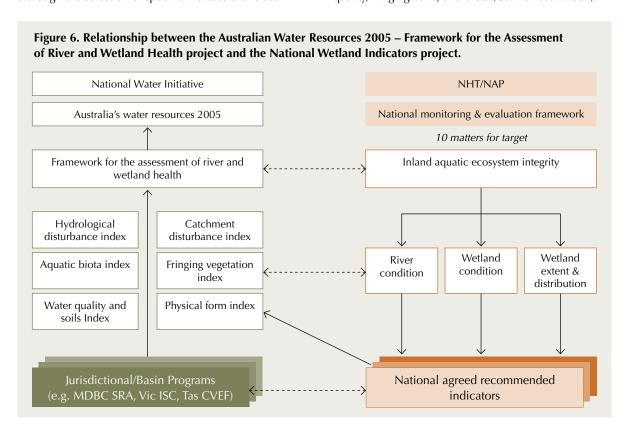


Table 42. Proposed wetland NRM resource condition indicators.

Indicator	Measures and Methods
Extent and distribution	
Extent and distribution of wetlands	Reference: EPA (2005) Qld Mapping and Classification
Extent and distribution of significant wetlands (Ramsar, DIWA, other policy or legal instruments)	Reference: EPA (2005) Qld Mapping and Classification
Condition	
Catchment disturbance	
incorporates the effects of land use, change in vegetation cover and infrastructure (e.g. roads, rail-lines, water regulation, drainage changes) on the likely run-off of water, sediments, nutrients and other contaminants to	

wetlands. The index should incorporate the effects of large-scale non-point source impacts. Catchment disturbance

- Land use
- Infrastructure
- Land cover change

Reference: Methods and recommended datasets from:

- o NLWRA (2002) Australian Catchment, River and Estuary Assessment 2002 Vol 1. NLWRA, Canberra. pp 69-77
- o WRON (2006) Australian Water Resources 2005. Discovery phase. Appendix D: River health. NWC, Canberra. pp 35-41

Datasets include topographic maps, Land use of Australia, version 2 (NLWRA), Catchment scale land use for Australia, Wild Rivers, and the National land use mapping project.

Physical form and processes

uses measures of local topography, physical structure and connectedness (dam, weirs, levee banks, groundwater abstraction) to assess the state of local habitat and its likely ability to support aquatic life. This theme concentrates on the immediate surrounds of the wetland and inside the individual wetland.

Area of wetland	Percentage reduction in wetland area
	Reference: DSE (2007) Index of Wetland Condition. Methods Manual (draft)
	Loss in area of original wetland
	Reference: Clarkson et al. 2004. Handbook for monitoring wetland condition (NZ wetlands)

Indicator	Measures and Methods	
Wetland topography	Percentage of wetland where activities (excavation and landforming) have resulted in a change in bathymetry	
	Reference: DSE (2007) Index of Wetland Condition. Methods Manual (draft).	
	o 'tick and flick' in the field	
	o Bathymetric survey (e.g. Robertson & Massenbauer 2005)	
	o LIDAR	
	(Also refer to current indicator: Extent of inundation)	
	Degree of sedimentation/erosion	
	Reference: Clarkson et al. 2004. Handbook for monitoring wetland condition (NZ wetlands	
	Percentage change in bathymetry	
	Reference: No methods sourced – ? Robertson & Massenbauer 2005	
Soil disturbance	Percentage and severity of wetland soil disturbance e.g. pugging, driving of vehicles in wetlands, carp mumbling, human trampling	
	Reference: DSE (2007) Index of Wetland Condition. Methods Manual (draft)	
	Substrate disturbance – observation of disturbance (none to recently occurred)	
	Reference: Fennessy et al. (2004) Review of rapid methods for assessing wetland condition. EPA/620/R-04/009. USEPA	
Hydrological Disturbance		
Both surface water and groundwater regimes are important to aquatic ecosystem function. This theme relies heavily on the premise by Boulton and Brock (1999) that the primary components of the water regime are 'timing, frequency, duration, extent and depth, and variability' and that they are all scale-dependant and are spatially and temporally related to each other		
Physical modifications to hydrology in-flow, drainage	Severity of activities that change the water regime	
and extraction	Reference: DSE (2007) Index of Wetland Condition. Methods Manual (draft)	
	Impact of man-made structures	
	Reference: Clarkson et al. 2004. Handbook for monitoring wetland condition (NZ wetlands)	
Changes to water regime	REQUIRES MORE DEVELOPMENT AND EXPERT ADVICE	

Indicator	Measures and Methods
Water And Soil Quality	
Water and soils quality considers the effects on biota of	changes in water and soil quality characteristics
Turbidity (light climate) regime Salinity regime	REQUIRES MORE DEVELOPMENT AND EXPERT ADVICE
Change in pH	Use trials to collect diurnal data
Soil properties – change in salinity, acidity	•
	•
Fringing Zone	
represents structural and condition features of the zone	surrounding a wetland.
Change in fringing zone (measured by change in	presence of an intact fringing zone
vegetation condition)	percentage of the fringing zone that is intact
	percentage of natural and exotic vegetation
	References:
	1. Spencer et al. (1998) Rapid appraisal wetland condition index.
	• Continuity of fringing vegetation – estimated by eye for each of the main vegetation layers (incl trees, rushes/sedges, grasses)
	Width of fringing vegetation strip – visual estimates at the four major compass points of a wetland
	2. DSE (2007) Index of Wetland Condition. Methods Manual (draft)
	% of wetland perimeter with a buffer
	Average buffer width
	3. Golus et al. (2006) Wetland Assessment Technique
	Width of fringing vegetation
	4. Davis et al. (2006) Wetlands bioassessment

Biota

represents the response of biota to changes in the environment. It may be based on sampling of biota sensitive and/or responsive to human disturbance across various scales

Lacustrine and Palustrine Wetlands

Percentage of undisturbed vegetation remaining

within (100 m) of edge of wetland

Indicator	Measures and Methods
Change in wetland vegetation	REQUIRES MORE DEVELOPMENT AND EXPERT ADVICE –
	Develop AusRivAS-style methods
	Investigate Vegetation Matter for Target: http://www. nrm.gov.au/monitoring/indicators/vegetation- condition/index.html
	Investigate Index of Wetland Condition methods (DSE 2007), Floodplain and Wetland Methods (MDBC 2005)
Change in invertebrate diversity and community composition	REQUIRES MORE DEVELOPMENT AND EXPERT ADVICE –
	Develop AusRivAS-style methods
Change in wetland-dependent vertebrates (fish, frogs, reptiles, birds, mammals) presence, breeding and abundance	Investigate current methods e.g.:
	Fish: SRA, EHMP
	Frogs: MDBC (frog calls)
	Reptiles: no methods sourced
	Birds: MDBC, Kingsford (in prep),
	Mammals: no methods sourced
Change in introduced species (weeds and ferals) presence and abundance	There are several methods for introduced species presence and abundance listed in Appendix 8. Recommend investigation and trials to determine most suitable
Change in algae (as a measure of primary productivity	REQUIRES MORE DEVELOPMENT AND EXPERT ADVICE

9.2 AquaBAMM

AquaBAMM (Aquatic Biodiversity Assessment and Mapping Method) is a decision support method developed by Queensland EPA to assess conservation values in aquatic ecosystems through existing information and expert opinion. The non-riverine component of AquaBAMM is currently undergoing trials in Southeast Queensland. Whilst not strictly a method for determining resource condition, rather conservation values, criteria, indicators and measures are identified in the method. A comprehensive list of indicators and measures for non-riverine wetlands has been proposed, based on information and datasets readily available in Queensland (Table 43) (Clayton et al. 2006; P. Clayton pers.comm.). It is expected that this list will be finalised in mid-2008.

Table 43. Proposed AquaBAMM criteria, indicators and measures for freshwater non-riverine wetlands.

Indicators	Measures
1. Naturalness Aquatic (Diagnostic)	
Exotic flora/fauna	Presence of 'alien' fish species within the wetland
	Presence of exotic aquatic and semi-aquatic plants within the wetland
	Presence of exotic invertebrate fauna within the wetland
	Presence of feral/exotic vertebrate fauna (other than fish) within the wetland (expert panel list/discussion)
Aquatic communities/ assemblages	Wetland condition – as measured by an acknowledged condition metric
Habitat features modification	Snag removal within the wetland
	• % area of remnant wetland relative to preclear extent for each spatial unit
	 Presence of bund walls, ponded pastures, artificial waterbodies or other linear structures within the wetland
Hydrological modification	Mean annual extraction (or addition) (ML/year)
	Hydrological disturbance/modification of the wetland (e.g. as determined through EPA wetland mapping and classification)
	Presence of stormwater outlets within the wetland (expert panel list/discussion)
	Influence of industrial outlets (STP & aquaculture) within the wetland with respect to water quantity (expert panel list/discussion)

Indicators	Measures
Water quality	Median Total Phosphorous (ug/L)
	Median Total Nitrogen (ug/L)
	Median Turbidity (ug/L)
	Median Conductivity (ug/L)
	Median pH
	Presence of harmful algal blooms (expert panel list/discussion)
	• Influence of industrial outlets (STP and aquaculture) within the wetland with respect to water quality (expert panel list/discussion)
	Water quality index/score – an acknowledged metric calculated considering local, state or national water quality guidelines.
2. Naturalness Catchment (D	iagnostic)
Exotic flora/fauna	Presence of exotic terrestrial plants in the assessment unit
Riparian disturbance	% area of remnant vegetation relative to preclear extent within buffered non-riverine wetland: 500 m buffer for wetlands >= 8 ha, 200 m buffer for smaller wetlands
Catchment disturbance	% 'agricultural' land-use area (i.e. cropping and horticulture)
	% 'grazing' land-use area
	• % 'vegetation' land-use area (i.e. native veg + regrowth)
	% 'settlement' land-use area (i.e. towns, cities, etc)
	% area of known contaminated land adjacent to the wetland, measured within a 200 m buffer around the wetland
Flow modification	Farm storage (overland flow harvesting, floodplain ring tanks, gully dams) calculated by surface area
	% area of impervious surfaces within the assessment unit (typical of urban areas)
3. Diversity and Richness (Di	agnostic)
Species	Richness of native fish
	Richness of native aquatic dependent reptiles
	Richness of native waterbirds
	Richness of native aquatic plants (macrophytes)
	Richness of native amphibians (non-riverine wetland breeders)
Communities/assemblages	Number of macroinvertebrate taxa (Family level taxonomy)
	Native fish biotic index (observed : expected ratio)
Habitat	Richness of wetland types within the local catchment (e.g. SOR¹ sub-section
	Richness of wetland types within the sub-catchment

	\

Indicators	Measures
Geomorphology	Richness of geomorphic features (i.e. features determined through a classification such as the GAR method)
4. Threatened Species and Eco	osystems (Diagnostic)
Species	Presence of rare or threatened aquatic ecosystem dependent fauna species – NCAct ⁶ , EPBCAct ⁷
	Presence of rare or threatened aquatic ecosystem dependent flora species – NCAct ⁶ , EPBCAct ⁷
Communities/assemblages	• Conservation status of wetland Regional Ecosystems – Herbarium biodiversity status, NCAct ⁶ , EPBCAct ⁷
5. Priority Species and Ecosys	stems (Expert opinion)
Species	 Presence of aquatic ecosystem dependent 'priority' fauna species (expert panel list/discussion or other lists such as ASFB⁹, WWF¹⁰, etc)
	Presence of aquatic ecosystem dependent 'priority' flora species (expert panel list/discussion)
	Habitat for, or presence of, migratory species (Expert Panel list/discussion and/or JAMBA ¹¹ / CAMBA ¹² agreement lists and Bonn Convention)
	Habitat for significant numbers of waterbirds (expert panel list/discussion)
Ecosystems	Presence of 'priority' aquatic ecosystem (expert panel list/discussion)
6. Special Features (Expert op	pinion)
Geomorphic features	Presence of distinct, unique or special geomorphic features (expert panel list/discussion)
Ecological processes	Presence of (or requirement for) distinct, unique or special ecological processes (expert panel list/discussion)
Habitat	Presence of distinct, unique or special habitat (including habitat that functions as refugia or other critical purpose) (expert panel list/discussion)
	Significant wetlands identified by an accepted method such as Ramsar, Australian Directory of Important Wetlands, Regional Coastal Management Planning, World Heritage Areas, etc.
	Ecologically significant wetlands identified through expert opinion and/or documented study
Hydrological	Presence of distinct, unique or special hydrological regimes (eg. Spring fed stream, ephemeral stream, boggomoss) (expert panel list/discussion)
7. Connectivity (Expert opinio	on)
Significant species or populations	The contribution (upstream or downstream) of the spatial unit to the maintenance of significant species or populations, including those features identified through Criteria 5 and/or 6 (expert panel list/discussion)
	Possibility for migratory or routine 'passage' of fish and other fully aquatic species (upstream, lateral or downstream movement) within the spatial unit

Indicators	Measures	
Groundwater dependent ecosystems	The contribution (upstream or downstream) of the spatial unit to the maintenance of groundwater ecosystems with significant biodiversity values, including those features identified through Criteria 5 and/or 6 (e.g., karsts, cave streams, artesian springs) (expert panel list/discussion)	
Floodplain and wetland ecosystems	• Extent to which the wetland retains critical ecological and hydrological connectivity, where it should exist, with floodplains, rivers, groundwater, etc. (expert panel list/discussion)	
Terrestrial ecosystems		
Estuarine and marine ecosystems	The contribution of the spatial unit to the maintenance of estuarine and marine ecosystems with significant biodiversity values, including those features identified through Criteria 5 and/or 6 (expert panel list/discussion)	
8. Representativeness (Diag	nostic)	
Wetland protection	The percent area of each wetland type* within Protected Areas (National Park, State Forest, Conservation Park, Nature Refuge) under the Nature Conservation Act and/or relevant environment or conservation reserves under the Land Act.	
	The percent area of each wetland type* within a coastal/estuarine area subject to the Fisheries Act, Coastal Management Act or Marine Parks Act.	
Wetland uniqueness	The relative abundance of the wetland management group to which the wetland belongs within the catchment or study area (management groups ranked least common to most common)	
	The relative abundance of the wetland management group to which the wetland belongs within the sub-catchment (management groups ranked least common to most common)	
	The size of each wetland relative to others of its management group within the catchment or study area	
	The size of each wetland type* relative to others of its type within a sub- catchment	
	Wetlands representative of the catchment – identified by expert opinion (expert panel list/discussion)	
	The size of each wetland type* relative to others of its type within the catchment or study area	

^{*} wetland type = habitat type; 1.State of the Rivers; 2.Stream Invertebrate Grade Number – Average Level; 3.Australian River Assessment System; 4.Ephemeroptera, Plecoptera, Trichoptera; 5.Annual Proportional Flow Deviation; 6.Nature Conservation Act; 7.Environment Protection and Biodiversity Conservation Act 1999; 8.Australian Society for Fish Biology; 9.World Wildlife Fund; 10.Japan–Australia Migratory Bird Agreement; 11.China–Australia Migratory Bird Agreement.

9.3 CRCFE Dryland Refugia

In many parts of the landscape, where ephemeral waterways are the norm, it is common to find riverine waterholes that behave more like lacustrine and palustrine wetlands. The CRCFE Dryland Refugia project (2001-2005) investigated several such waterholes in arid and semi-arid rivers of Queensland (Cooper Creek, Warrego River and the Border Rivers) to determine the relationships between biodiversity

and the physical attributes of individual waterholes, as well as the spatial and temporal pattern of connectivity in the landscape. An understanding of the importance of refugia in the landscape and how changes in hydrology and land management can influence the biological and physical processes was a major outcome. Many variables covering geomorphology, hydrology, and water quality were collected during the course of the project (Table 44) (Marshall et al 2006a). In addition, fish, macroinvertebrates, macrophytes, algae, and biophysical processes were sampled.

Table 44. Physical variables measured in the Dryland Refugia project (Marshall et al. 2006a).

Variable class	Variables	
Floodplain morphology	Total flood plain widthEffective flood plain widthFlood plain setting	Number of channelsChannel distance to the nearest waterholeStraight line distance to the nearest waterhole
Waterhole morphology	 Bifurcation ratio Surface Area Perimeter Length Width Fetch length Circularity Elongation ratio 	 Length to width ratio Width to depth ratio Hydraulic radius Wetted perimeter Shape index Depth of cross-section Volume
Within waterhole morphology	 Mid-channel bars Backwater Offtake channels Bench 0 – 1/3 Bench 1/3 – 2/3 Bench 2/3 – 3/3 Side bars Miscellaneous bars 	 Anabranches Bed and bank complexity Eroding banks Snag density Scour holes Boulders Fringing vegetation Overhanging vegetation

Variable class	Variables	
Sample habitat	% deep (not sampleable)	Edge algae density
	• % edge	Edge detritus density
	% silt/clay pool	Edge macrophyte density
	% sandy pool	• Rocks
	% rocky pool	Mean wetted width
Water quality*	Conductivity	DO 24 hr minimum
	Turbidity	Water temperature 24 hr maximum
	Total nitrogen	• Silicate
	Ratio total N: total P	Sulphate
Hydrology	• Time since discharge >1500 ML/day	Total antecedent discharge in past 60 days
	Time since discharge >1000 ML/day	Total antecedent discharge in past 30 days
	Time since discharge >500 ML/day	• Duration of most recent high flow event >
	Time since discharge >50 ML/day	500 ML/day
	Total antecedent discharge in past 90 days	

^{*} only those WQ parameters used in the analyses are listed

William Willia

9.4 Conceptual Models

One of the major outcomes of the Wetland Indicators Workshop was the development of conceptual models for Queensland lacustrine and palustrine wetlands (Maher et al. 2006). Several wetland subtypes common in Queensland were identified, and many of the key features, processes, pressures, drivers, impacts, responses and potential indicators listed. Time limited the number of wetland subtypes that could be modelled at the workshop, and it was also recognised after the event that most of the subtypes had been selected intuitively, rather than by an accepted process. This led to discussions with the Queensland Wetlands Joint Government Taskforce and a project extension to explore a formal wetland classification system for Queensland wetlands (Section 4). A new Queensland Wetlands Programme project will use the proposed Wetland Description Tool and this set of conceptual models to develop a complete set of conceptual models defined by a rigorous classification system pertinent to Queensland.

Four general conceptual models representing the wet and dry phases of generalised lacustrine and palustrine wetlands were built initially at the workshop. Following this stage, a set of wetland subtypes for each wetland type was proposed and the most common of those were modelled. All the models are presented in Tables 45-58 and Figures 7-22.

It is worth noting that these models have been cited several times only months after their development, in the literature (Norris et al. 2007), in training programs (DPI&F FMS,) and for presentations (R. Norris pers. comm.; A. McDougall pers. comm.; I. Layden pers. comm.). They have been used by the Australian Government in developing ecological character descriptions for Australia's Ramsar wetlands, and have been used by South Australia's DWLBC to assist in developing conceptual models for their wetlands as part of the National Wetland Indicators Review. Their usefulness in describing wetlands and ecological concepts has been proven.

Lacustrine wetlands

Table 45. Lacustrine wetlands conceptual model.

Lacustrine wetlands

Key Features

Physical

- Surface area ≥8 ha
- If <8 ha, then must be deeper than 2 m (at deepest point when full)
- Sediment substrate
- Can have connectivity with other water bodies (leading to species dispersal)
- Spatial complexity/ habitat complexity
 - Submerged debris as habitat
 - o Bathymetry shape of lake bed
 - o Presence/absence of islands within the water body

continued on next page

Table 45 continued from previous page

Lacustrine wetlands

Hydrology

- Water dominated
- · Water source: groundwater/overland flow/precipitation/channel overflow
- Water inflow regime: pulsing of water, or single large influx event
- Evaporation
- · Mixing by wind
- Velocity/water movement/flow rates/flushing
- Stratification
- Wetting/drying fluctuation may occur

Physico-chemical

- · Water regime and chemistry
- · Nutrients input: overland flow/allochthonous/groundwater
- · Sediment and nutrient input
- Water quality
 - o lonic composition
 - o Organic matter
 - o pH
- Light climate variable clear/turbid/tannin stained/stratification
- · Interaction between plants and light climate

Biota

- Without emergent vegetation over most of the wetland extent
- Submerged vegetation/ macrophyte vegetation (depth limited generally <3 m, but can be much deeper if turbidity is very low)
- Riparian buffer zones
- Allochthonous input (organic material produced by photosynthesis outside the wetland e.g. leaf litter)
- Autochthonous input (organic material produced by photosynthesis within the wetland e.g. aquatic plants)
- Primary production light/temperature controlled
- Macrofauna in and on water (birds, fish, turtles, frogs etc)
- Nesting birds affecting nutrients
- Macroinvertebrates (grazers at edges)
- Extent (depth and duration of water affecting vegetation)
- Dynamic exchange between benthic, littoral, and pelagic zones

Lacustrine wetlands

- Algae
 - o Phytoplankton
 - o Algal 'bath tub rings' at the water line, particularly in arid zones
 - o Attached or benthic algae
- Zooplankton
- Bacterioplankton
 - o Autotrophic
 - o Heterotrophic
- Benthic microbiota

Processes

- Sedimentation
- Biogeochemical cycling of nitrogen, phosphorus and carbon
- Temporal fluctuations (including seasonal/cyclical)
- Bush fire: successional phenomena life cycle phases hydrological variation giving successional ecology and morphology
- Set of meta-stable states or continuous variation

Drivers

- Hydrology
 - o Water depth
 - o Groundwater exchange
 - o Source
 - o Evaporation
 - o Surface run-off
 - o Connectivity
 - o Seasonality
 - o Duration and frequency
 - o Flushing regime
- Light
 - o Turbidity
 - o Stratification
 - o Tannins/colour

continued on next page

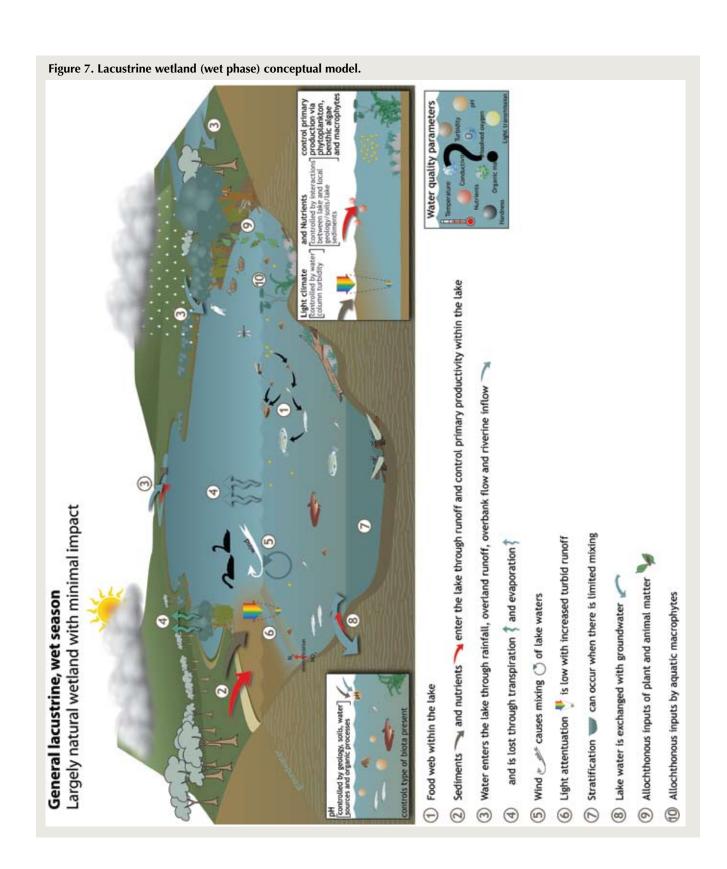
Table 45 continued from previous page

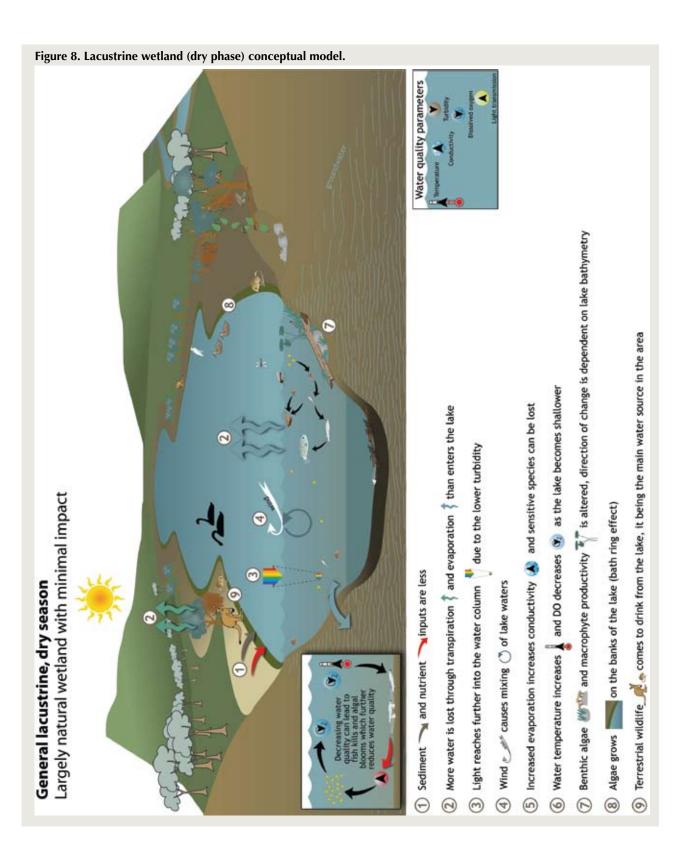
Lacustrine wetlands

- Water quality
 - o pH
 - o Conductivity and ionic composition
 - o Nutrients and organic matter
 - o Hardness
 - o Dissolved oxygen
- · Habitat complexity
 - o Within lake microhabitats
 - o Lake geomorphology and shape
 - o Landscape/catchment position
 - o Sediment/substrate composition

Pressures

- Biota (cover and type)
- Water regime
- Timing
- Flow duration, size, frequency
- Acidic conditions
- Waterbody margins
- Nutrients
- Deposition
- Weeds
- · Exotic animals
- · Human impacts
- Lake bed cropping/grazing when dry


Potential Indicators


- · Photic depth
- Nutrient status
- Salinity
- Aerial extent (remote sense based) fluctuations, aerial extent of wetted area
- Turbidity (couple remote sensing and on-ground data at selected sites)
- Fringing vegetation fluctuations in response to impacts e.g. river red gum deaths
- Changes in amount of surface area that falls into certain categories defined by ratio between euphotic depth and total depth.
- Oxygen profile the point at which oxygen falls below thresholds for diverse macroinvertebrate populations

A STATE OF THE PARTY OF THE PAR

Lacustrine wetlands

- Those that do/don't have enough oxygen all day, and those that have enough for part of the day
- Weediness (proportion of weeds in aquatic vegetation)
- Biota diversity and abundance
- Spatial extent, specifically in terms of existence value.
- Spatial extent and events which may change the surface area:
 - o Water quantity
 - o Hydrological fluctuations
 - o Water quality
 - o Range of ecological functions
- Trophic status
- Chlorophyll a
- Algal blooms
- Extent 'reference extent model' for types of lacustrine
- Hydrological regime disturbed/modified/deviation from natural
- · Deviation from expected hydrology
- Deviation from expected riparian vegetation
- Landscape function analysis: catchment contribution, erosion, irrigation
- Use of the wetland (for recruitment, roosting, moulting, migration stopover)

Table 46. Conceptual model for coastal dune lakes.

Coastal dune lakes eg. Blue Lake, Stradbroke Island (window lake)

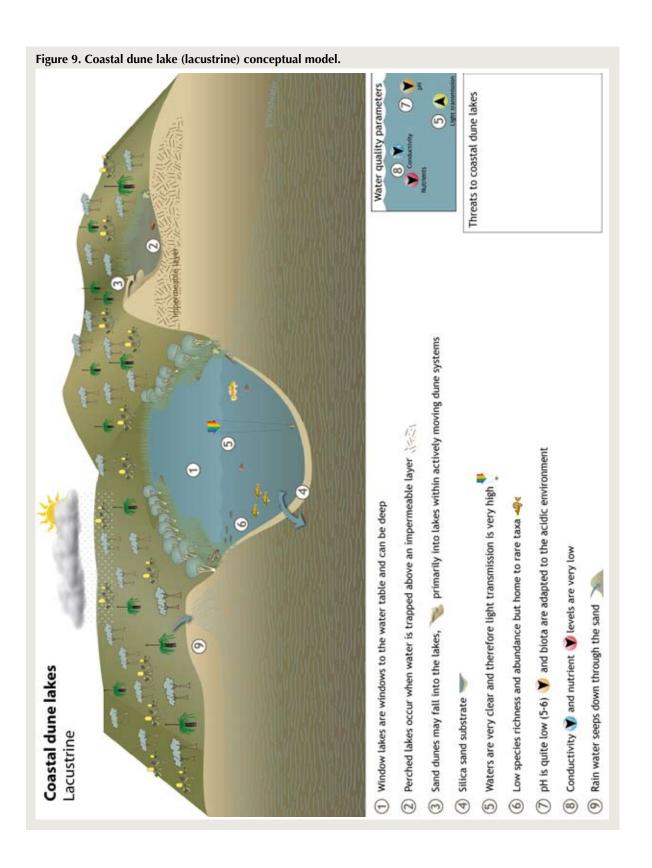
Key Features

- Physical
 - o High stability, low variability
 - o Regional watertable fluctuates slowly
 - o High transparency (light may reach bottom)
 - o Silica sand substrate
 - o Deep
 - o Majority of three dimensional habitat is emergent macrophytes
- Hydrological
 - o Groundwater exchange
 - o Precipitation runoff and percolation through sand
- Physico-chemical
 - o pH slightly acid 5-6
 - o Conductivity very low (<100 μS/cm (Na, Cl))
 - o pH of groundwater 7.5 (key to ecology)
 - o Low nutrients
 - o Low productivity
- Biota
 - o Adapted to slightly acidic water
 - o Low species richness and abundance (low biomass, rare species)

Pressures

- Water regime change
- · Acidic condition change
- Nutrient status change
- · Vegetation clearing and dune movement
- Tourism

Ecological responses


- pH and conductivity change could equate to a change in community structure, and loss of the current ecological system
- Change in water level can lead to change in three-dimensional habitat (reeds), which supports biota
- Loss of unique organisms and influx of ubiquitous organisms

Knowledge gaps

- Acidity (not pH) an understanding of the conditions that lead to acidity.
- · Infiltration effects

Measurement

• There is a possibility of remote sensing to show the extent of the water body.

Table 47. Conceptual model for terminal depression lakes.

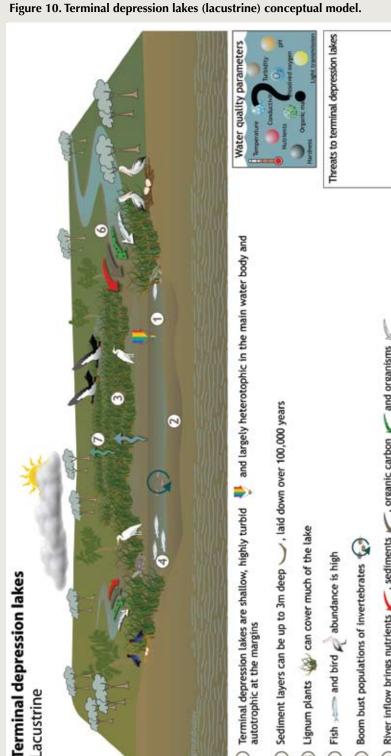
Terminal depression lakes

Key Features

Wet phase

- Physical
 - o Shallow 0-2 m, large extent (>8 Ha)
 - o Unlikely to stratify (low mixing)
 - o 2.5 m sediment, up to 100,000 years deposition
 - o Channel network, overflow outlet
- Hydrological
 - o Main input is river inflow containing nutrients, carbon, sediment and organisms
- Physico-chemical
 - o Highly turbid (light penetration 0-2 cm)
- Biota
 - o Autotrophic at margins (primary producers: algae, plants)
 - o Heterotrophic in main water body (consumers)
 - o Large populations of birds and fish

Dry phase


- Physical
 - o Large areas of bare cracking clays
 - o Soil turnover (important)
- Hydrological
 - o Can dry completely
- Biota
 - o Aquatic organisms take refuge in the sediments
 - o Increase in terrestrial fauna
 - o Lignum becomes habitat for terrestrial animals, including ferals

Pressures

- Hydrological
- Quantity and duration of water retention has the most significant effect
- · Flow regime change
- Reduced extent
- Reduced waterbird, fish populations
- Reduction in amplitude and frequency of flows
- Sedimentation change

Indicators

- Hydrological regime: temporal and spatial
- Model the relationship between inflows and extent of water body
- Vegetation extent and structure, lignum regeneration
- Breeding success of colonial waterbirds
- · Fish population species and abundance
- Water temperature and quality
- Total grazing pressure

Table 48. Conceptual model for depression lakes (inland, non-arid).

Depression lakes (inland, non-arid)

Key Features

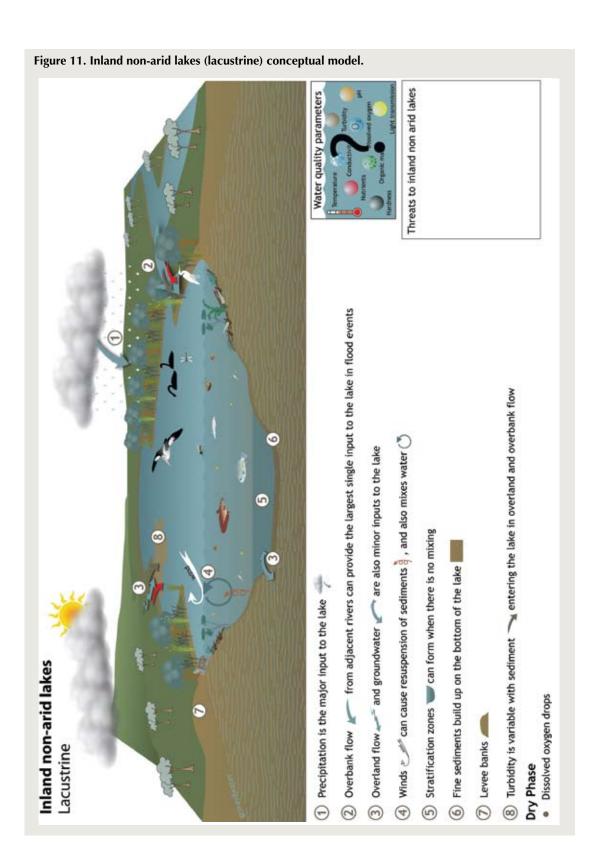
• Depression in the floodplain

Wet phase

- Physical
 - o 8-9 m deep
 - o Depositional environment (fine sediment substrate)
 - o Can have levees
 - o At low water levels, the process of wind re-suspension of bottom sediments is significant
 - o Habitats reset by large overbank flow events
- Hydrological
 - o Stratification can occur
 - o Sources: local storm events (direct precipitation and overland flows), overbank flows from local channels (less frequent but can be largest)
 - o Groundwater interaction
 - o Seasonal draw down
 - o Influenced by local geography (height of surrounding landscape) and access to overbank flows
- Physico-chemical
 - o Variable turbidity
 - o Turbidity influenced by nature and frequency of overbank flows
- Biota
 - o Very productive biota, fish, birds, turtle etc
 - o High diversity
 - o Fringe riparian vegetation
 - o Macrophyte beds and emergent vegetation in the littoral zone

Depression lakes (inland, non-arid)

Dry phase


- Physical
 - o Settling of sediment in bottom of depression, resulting in changes in the bathymetry
- Hydrological
 - o No open water
- · Physico-chemical
 - o Dissolved oxygen <8% saturation
 - o Organic substrate becomes anoxic
- Biota
 - o Floating aquatic weed infestations
 - o Change in faunal composition to more tolerant taxa

Drivers

- · Sediment and nutrient loads and nature of delivery
- Hydrological regime including groundwater (inflow/outflow/volume)
- Water quality
- Timing of inputs
- Connectivity with other waterbodies
- Aquatic plant community (including phytoplankton and algae)

Indicators

- Open water coverage
- Changes in aquatic fauna and flora composition and abundance
- Light
- Dissolved oxygen

Table 49. Conceptual model for artificial lakes.

Artificial lakes e.g. Water supply dam

The environmental and ecological values of this lacustrine sub-type are a low priority, so position within the catchment/landscape was not assessed.

Key Features

Full dam

- Large impounded surface area
- Mixing (by wind)

Low dam

- Settling of sediments behind dam wall
- Reduction in biota composition and abundance
- · Increased grazing pressures around dam margins leading to nutrient loading

Pressures

Hydrological regime (raising and lowering of dam level)

Drivers

- Function e.g. water supply (as opposed to environmental value)
- Level of function (potable vs. irrigation)
- Ability to support threatened species
- Hydrological regime (volume and timing of filling and release)

Responses

- · Water quality degradation
- Increase in algae and nutrients
- Increase in turbidity
- Decrease in biota

Indicators

- Water quality
- Biota composition
- Indicators specific to threatened species
- Spatial extent of wetted area (remote sensing)

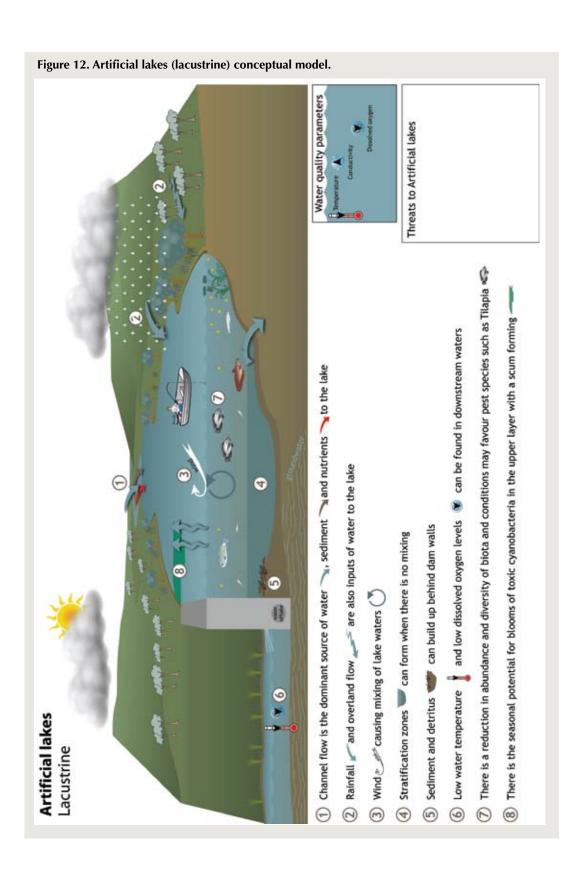


Table 50. Conceptual model for arid-zone saltwater river-fed lakes.

Arid-zone saltwater river-fed lakes

Key Features

- Large terminal wetlands
- Three phases: drought/flooding/drying
- High evaporation rates
- · Low groundwater and rainfall inputs
- · Connectivity to other waterbodies supplies majority of input
- Low soil permeability
- Basin shape provides the habitat complexity
- Salinity gradients govern the biota

Drivers

- Climate
 - o Rainfall
 - o Temperature
 - o Wind
 - o Lack of high riparian vegetation
- Hydrology (externally driven)
- Connectivity
- Soil type
- Basin shape
- Water chemistry

Pressures

• Flood harvesting (external to site)

Responses

- Extent and duration of inundation
- Vegetative zone shift
- Salinity (more saline)
- Reduction in fish and bird populations

Indicators

- Biota at a 'whole of system' scale (fish, waterbirds, plants)
- Long-term monitoring (due to short term noise)

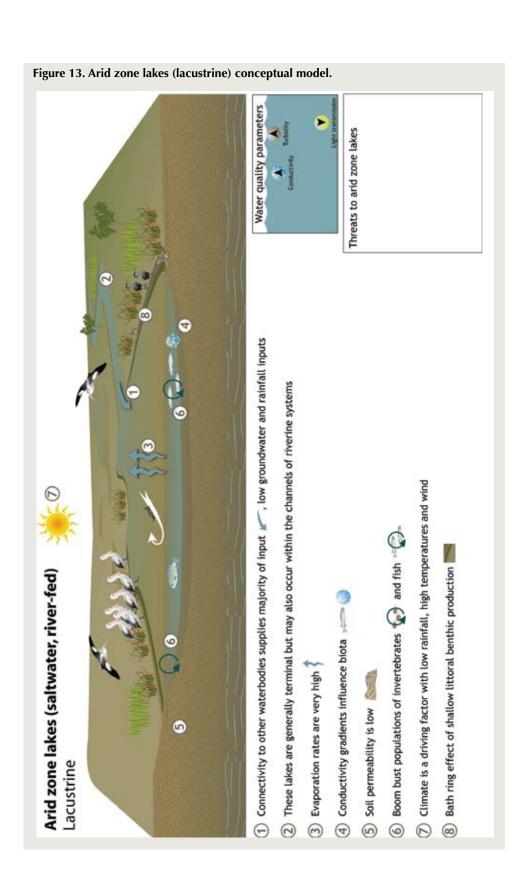


Table 51. Conceptual model for inland salt lakes.

Inland salt lakes

Key Features

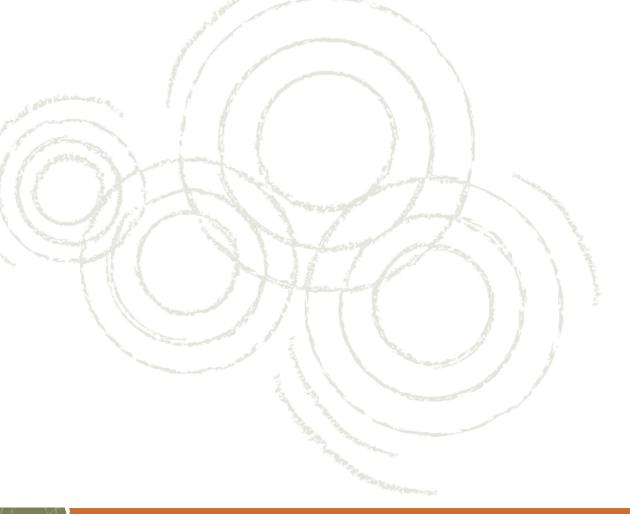
- Physical
 - o Salt crust in dry phase
 - o Sand and clay substrate
 - o High temperature
- Hydrological
 - o Low rainfall
 - o Highly variable hydrological regime
 - o Source: overland flow (groundwater interaction unknown)
 - o Filling and drying cycles
- Physico-chemical
 - o Turbidity/salinity cycle
- Biota
 - o Boom and bust cycles
 - o Limited riparian vegetation (e.g. saltbush)

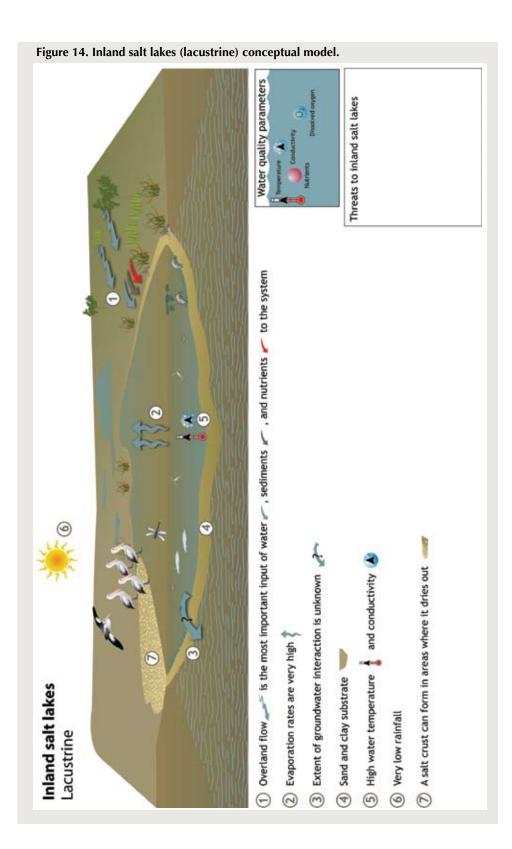
Drivers

- Water quality
 - o Salinity/turbidity cycle
 - o Colour
 - o pH
 - o Temperature
 - o Nutrients
 - o Dissolved oxygen
 - o Light
- Hydrology (externally driven)
- Connectivity
- Soil type
- Basin shape
- Water chemistry

continued on next page

Table 51 continued from previous page


Inland salt lakes


Pressures

- Reduction in filling events (climate change)
- Increased grazing
- Extractive industries (unknown)

Indicators

- Rainfall
- Evaporation
- Hydrological regime
- Biota (invertebrates, fish, waterbirds)
- Water quality
 - o Salinity/turbidity cycle
 - o Nutrients
 - o Dissolved oxygen

Palustrine Wetlands

Table 52. Palustrine wetlands conceptual model.

Palustrine wetlands

Key Features

Physical

- · Area is not defined
- Generally shallow (Max depth 2 m)
- If water is ponded, it may only be a small amount which often dries up
- Gradual edge/bank

Hydrology

- Typically have dominant drying phase
- Sources: groundwater, local, floodplain, riverine
- Groundwater/surface exchange

Physico-chemical

- Variable water quality
- · Organic loading
- Soil condition is important (peat, acid sulfate soils)

Biota

- Vegetation dominated (palms, trees, shrubs, grass/sedges, aquatic vegetation)
- Shrubs (e.g. lignum) in water
- · Vegetation usually perennial
- Can be submerged macrophyte beds (but not the only type of vegetation)
- · Boom and bust cycles in ephemeral wetlands
- Fauna

Processes

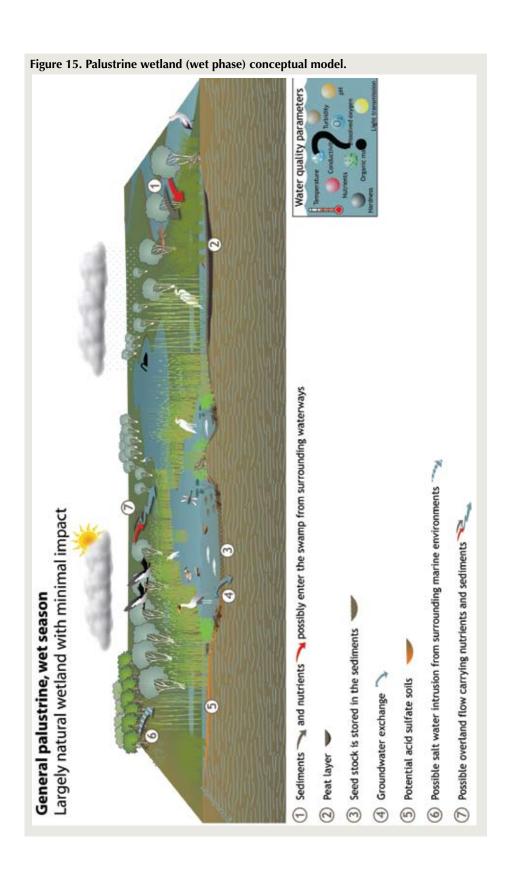
- Allochthonous input (organic material produced by photosynthesis outside the wetland e.g. leaf litter)
- Autochthonous input (organic material produced by photosynthesis within the wetland e.g. aquatic plants)
- Continuum of wetland types from lacustrine to palustrine, at varying stages of filling and drying which may
 or may not relate to seasonal fluctuations
- Fire (particularly in peat areas)
- Ecosystem services
 - o Significant number are related to connectivity across water bodies e.g. fish migration (fish breeding area)
 - o Filtering
 - o Sediment retention
 - o Material flux/balance/polishing
- Need to define how long a dry area remains a wetland
- Soil conditions (acid sulfate soils); Peat condition
- Salt water intrusion
- Biogeochemical cycling of nitrogen, phosphorus and carbon
- Flooding

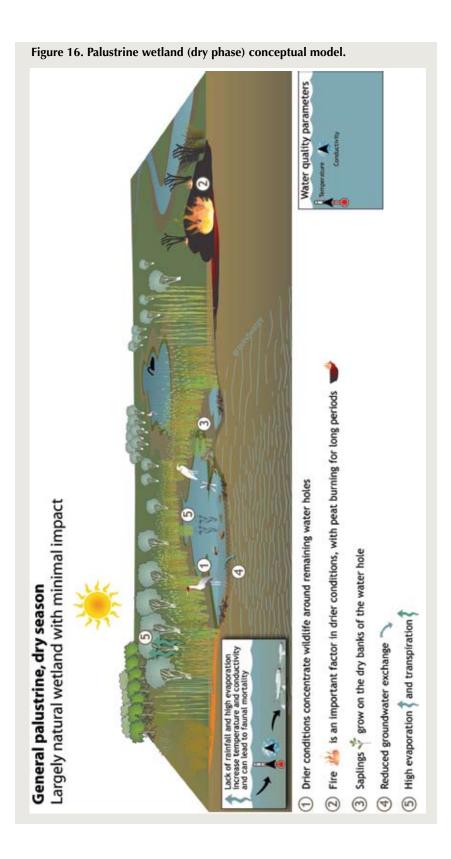
Drivers

- Hydrological regime, periodicity of inundation, seasonal drawdown
- Fire
- Connectivity/barriers
- Sea level rise
- · Feral animals
- · Water quality
 - o Salinity
 - o Temperature
- Weeds

Pressures

- Fire
- Grazing
- Climate change
- Drainage
- Hydrology changes
- Hydrological regime


Potential Indicators


- Extent and structure of groundcover (vegetation health index) 1
- Benthic biota
- Fish kills
- Organic loading
- Flow rate in bores and springs
- Extent
- Vegetation change
- Fauna habitat
- Diversity and abundance of the fauna
- Critical life stages
- Health of trees/cover (die back)

Knowledge Gap

• Extraction, discharge and recharge

1 There is a possibility of using established vegetation indicators. It was noted that there is a lack of similar tools for sedgelands, shrublands, grassmats if using these indicators

Table 53. Conceptual model for coastal forest swamps.

Coastal forest swamps e.g. Melaleuca, Casuarina

Key Features

Physical

- Shallow
- Seasonal inundation
- Located
 - o Behind backdunes and saltmarsh
 - o Depressions near rivers and estuaries
 - o Floodplain depressions
 - o Poorly drained lowland
- Can have old creek channels and deep holes
- Bed can be impermeable, excluding groundwater exchange
- Has a peat layer

Hydrology

- With/without groundwater inputs
- Short drying phase
- Source: overland flow

Physico-chemical

- Nutrients cycling important
- Acid sulfate soils
- Saline ground water
- Influence of high spring tides/flooding

Biota

- Dominated by trees
- Good biodiversity (fish, birds, mosquitoes, frogs, reptiles, mammals, insects)
- Melaleucas:
 - o Rich source of pollen and nectar for local and migratory birds, insects, bats and possums
- Koalas feed on leaves
 - o Important refuges in drought
- Understorey can be variable dependant on
 - o Water depth
 - o Canopy cover
 - o Water quality
 - o Groundwater
 - о рН
 - o Salinity
 - o Phragmites if saline; Blechnum fern if more freshwater

Processes

- Fire
- Hydrological regime: flow, water depth, duration, (seasonally variable)
- Return flows back to river providing nutrients, colour
- Flood attenuation, water filtering
- Fish habitat, fish nursery areas

Drivers

- Hydrology (hydroperiod extent and frequency of inundation)
- Water depth
- Fire
- Water quality
 - o Salinity
 - o pH

Pressures

- Clearing
- Draining
- Grazing
- Acid sulfate soils
- Bark removal
- Fire (frequency and intensity)
- Weed invasion
- Channelisation of meanders in creeks
- Saline intrusion
- Rising sea levels

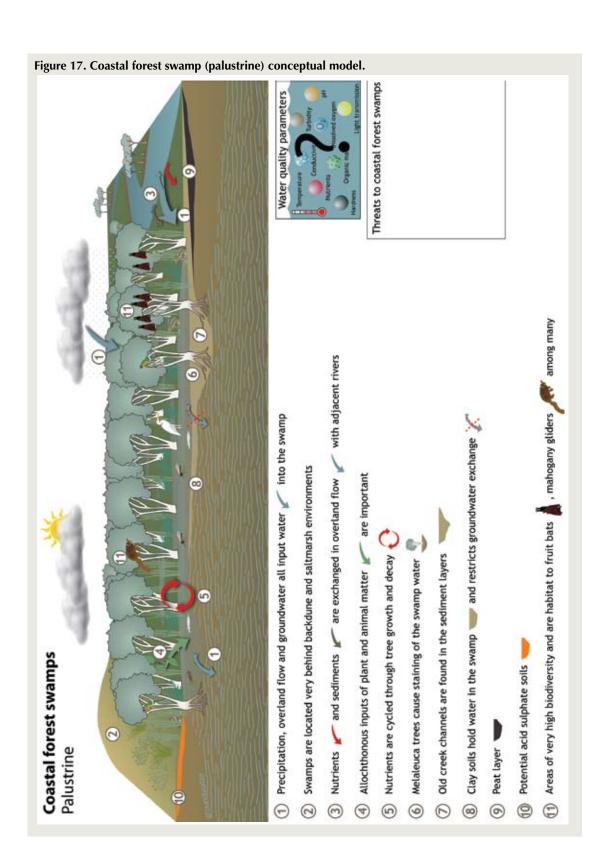


Table 54. Conceptual model for coastal grass-sedge swamps.

Coastal grass-sedge swamps e.g. Bulkuru sedge

Key Features

Physical

- Large waterbodies (100-1000 ha)
- Old marine plains
- Fine sediments

Hydrology

- · Marine influenced
- Source: local catchment, overbank flow
- · Rarely groundwater exchange
- Seasonal drawdown to drying in some

Physico-chemical

• Potential acid sulfate soils

Biota

- Treeless
- · Emergent and aquatic macrophytes
- · Allochthonous dominated
- Low number of fish species, high abundance
- Seasonally highly productive invertebrates are boom and bust
- Has breeding aggregations (waterbirds)
- Fish nursery

Drivers

- Hydrology
- Climate
- Rainfall

Pressures

- Grazing
- Weeds
- Fire
- Connectivity (bunding)
- Tail-water inputs
- Sediment loads
- · Climate change
- Feral animals (pigs)
- · Organic loading by excess growth of grasses drying dry phase
- Ponded pastures (with/without bunding)

Table 15 continued from previous page Figure 18. Coastal grass-sedge swamp (palustrine) conceptual model. Threats to coastal sedge swamps Coastal swamps are an important fish nursery for fish species such as barramundi into the swamp Nutrients and sediments are important inputs to the swamp Overbank flow and precipitation are the major inputs of water 🕜 Allochthonous inputs of plant and animal matter V dominate Fish abundance is high in swamps but species diversity is low Swamps are located very close to marine environments Swamps are an important breeding area for waterfowl Fine sediments due to it being an old marine plain Coastal grass-sedge swamps Boom and bust invertebrates 🔇 Potential acid sulphate soils 0 Palustrine 9

Table 55. Conceptual model for inland arid-zone swamps.

Inland arid-zone swamps (extensive in channel country)

Key Features

Physical

- Geomorphology: variable size and shape
- Shallow
- Defined by vegetation (may also be bare e.g. claypans)
 - o Shrub: lignum
 - o Grass: cane grass
 - o Wooded: Coolibah, River Red Gum, Black Box, Casuarina

Hydrology

- Sources: precipitation and local catchment (all types), overbank flow (Shrub, Wooded)
- No groundwater interaction

Physico-chemical

• Variable turbidity

Biota

- · Lignum swamps important for waterbirds
- Boom and bust (invertebrates)
- · Important habitat for terrestrial grazers and stock when dry

Drivers

- Climate (evaporation)
- Soil type
- · Connection/isolation from river
- Fire
- Water quality
- Water depth

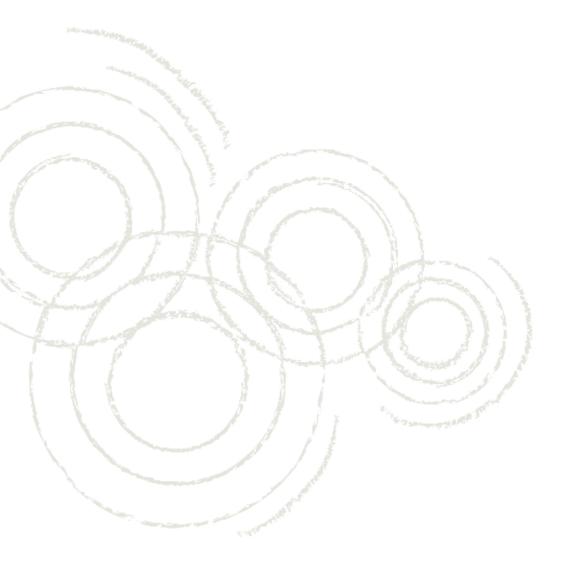
Pressures

Grazing (unsustainable)

Impacts

- Selective removal of vegetation by stock
- Soil compaction, pugging

Responses


- Long term changes to vegetation (structure, recruitment, composition)
- Loss of fauna habitat leading to reduced recruitment/nesting

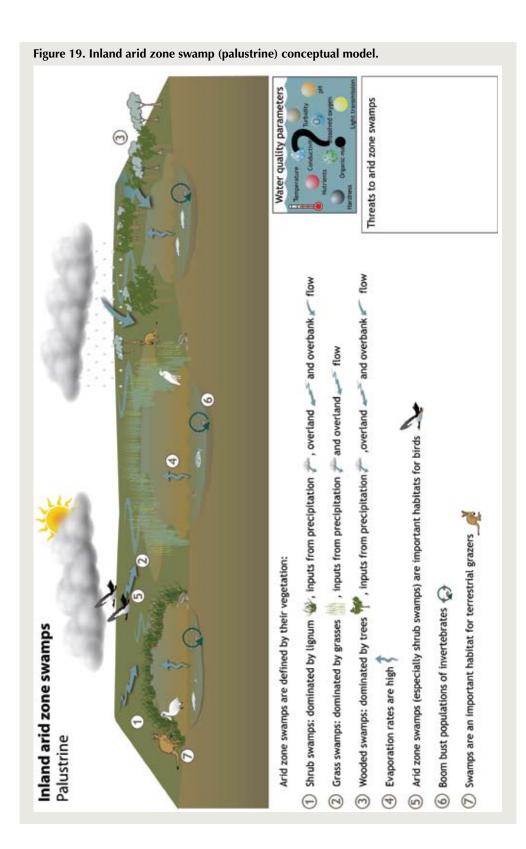

continued on next page

Table 55 continued from previous page

Indicators

- Vegetative cover (on-ground; remote sensing not appropriate)
- Presence/absence of seedlings (giving a health index for vegetation)
- Pug density (stock rates)
- Stock track density
- Stocking rates (stock specific)
- Impact of native animals (how do we distinguish impacts from livestock?)
- Presence/absence of palatable species

Table 56. Conceptual model for artificial swamps (bore drains).

Artificial swamps (bore drains)

Key Features

Physical

- 0-10 ha around the spring or bore head, and may include a long, narrow channel covering many kilometres
- Groundwater (Great Artesian Basin (GAB)) fed systems of purpose-managed drainline
- Refugia

Hydrology

- · Open water
- Pond or pool on the surface
- Water level constant
- No drying phase

Biota

- Floating macrophytes, emergent reeds, sedges
- Surrounding vegetation often contains weeds/ferals

Drivers

- May mimic natural systems
- Water quality
 - o Temperature
 - o Water chemistry
 - o Salinity, calcium, sodium

Pressures

- Cap and pipe program
- Stock
- Recreation

Impacts

- Change floodplain dynamics, flows, and sediment storage
- · Declining water quality in the tailwater
- Reduced GAB water pressure
- Cap and pipe program

Indicators

- Flow rate and pressure
- Extent
- Vegetation change (terrestrial and aquatic)
- Bird, fish populations
- Tourist visitation

Table 57. Conceptual model for natural groundwater springs.

Natural groundwater springs

Key Features

Physical

- Generally isolated and localised systems
- Different types
 - o Break of slope (fractured rock)
 - o Watertable induced (due to fluctuations in groundwater)
 - o Mound springs (mostly fed by artesian water)

Hydrology

- Source:
 - o Break of slope: local catchment
 - o Watertable induced: regional water
 - o Mound springs: sub-artesian

Biota

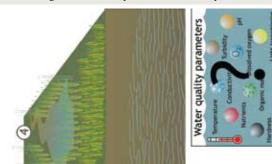
• High level of endemic organisms (fish, crustacea, snails, invertebrates)

Drivers

- Hydrology
- Water quality
- Extent and structure of vegetation
- Extent of inundation area

Pressures

- Mound springs:
 - o Grazing (domestic, native, feral)
 - o Agricultural development
 - o Fire
 - o Tourism
 - o Drawdown (agricultural, mining)
 - o Excavations and modifications


Indicators

- Flow rate
- Salinity (water quality)
- Temperature
- Flow extent/inundation area
- Wetting/drying cycles

Figure 21. Natural groundwater (palustrine) conceptual model.

0

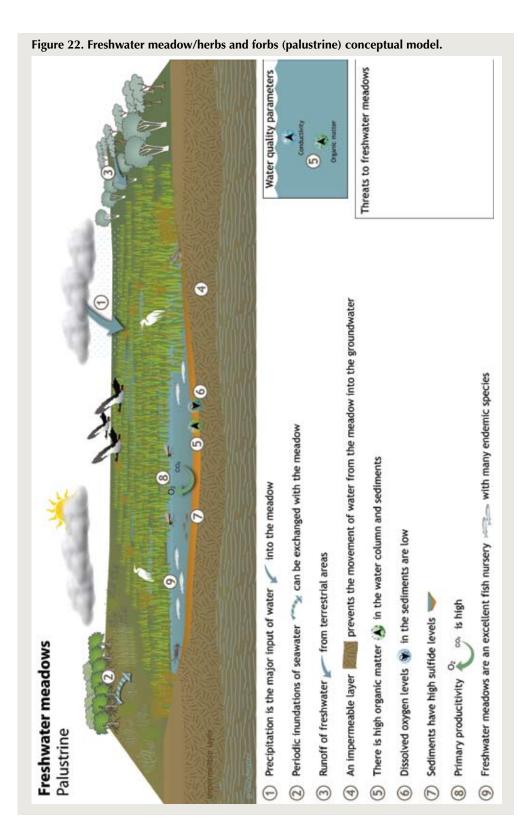
Natural groundwater Palustrine

Threats to natual groundwater springs

Break of slope, fractured rock groundwater spring with a local water source

(2) Watertable induced groundwater spring sourced by regional water source

(3) Mound spring fed by artesian water


Can form into a channel with enough water flow 4

High level of endemic species (2)

Freshwater meadows and herbs and forbs were developed separately at the workshop, but later discussion determined that the similarities were so great that they be treated as the one wetland type.

Table 58. Conceptual model for freshwater meadows/herbs and forbs.

Freshwater meadows	Herbs and forbs
Key Features Physical	Key Features Physical
Coastal, close to tidal influences	• Small
Similar to 'Herbs and Forbs'	• Shallow (<0.5 m deep)
• <0.5 m deep	Low relief
Hydrology	Clay/sand base
Exist as a result of water logging (groundwater)	Seasonal/intermittent
Localised run-off	Hydrology
Physico-chemical	Source: precipitation
Periodic inundation by salt water	Generally no interaction with groundwater
High organic matter	Physico-chemical
Potential for acid sulfate soils	Freshwater
Biota	Biota
Mangroves and saltmarsh nearby	Herb dominated, annuals
Fish nursery	Turnover in species
Uniform grass (herbs and forbs) growth	Refugia from predation
DriversHydrologic regimeVegetation gradient (terrestrial to marine)	•
Pressures Human impact (people, urbanisation, grazing) Soil compaction Plant loss Nutrients increase Increase in open water Weeds Climate change (sea level rise) Vegetation clearing Cultivation Fire Ponded pasture	Pressures Grazing and cutting Pugging Cropping and leveling Weed invasion Fire
Indicators	Indicators
Ground cover change and extent	Vegetation assessment (wet and dry phases)
Benthic biota	• Weediness
Fish kills	Grazing pressure (remote sensing)

10 Groundwater Wetlands

Groundwater is a natural resource whose importance has only been widely recognised in the past few years. Increasing pressure placed on groundwater reserves through extraction and anthropogenic impacts has prompted governments and researchers to focus on the resource as an ecosystem deserving of understanding, protection and management.

Groundwater dependent ecosystems (GDE) are those ecosystems that derive part or all of their aquatic resources from underground water. Researchers have recognised six categories of GDEs (terrestrial vegetation, river base flow systems, aquifer and cave

ecosystems, wetlands, terrestrial fauna, and estuarine and near-shore marine ecosystems) (Sinclair Knight Merz 2001), some of which have already been addressed in this report.

Queensland has an extensive groundwater aquifer system, part of which is the Great Artesian Basin. There are many other aquifers including coastal, alluvial (shallow and deep), and fractured rock (Figure 23), all of which are prone to differing stresses (Table 59) (McNeil & Clarke 2007).

Figure 23. Characteristics of main aquifer types (McNeil & Clarke 2007).

DEEP ALLUVIAL AQUIFEREnvironmental Values – D S I Vulnerability

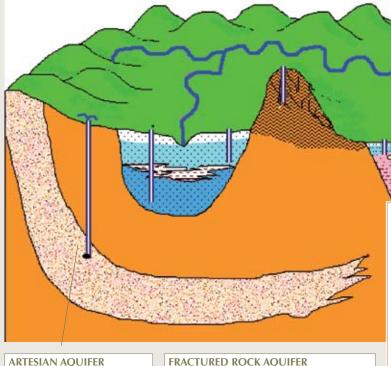
hydrological stress – high Endemic problems – D S Management problems – S N T D H L

landuse - moderate - low

SHALLOW AQUIFER

Environmental Values – E D S I Vulnerability

landuse – moderate – high – very high hydrological stress – high – very high Endemic problems – S


Management problems – S N T D H R L

COASTAL AQUIFER

Environmental Values – E D S I Vulnerability

landuse – high hydrological stress – high Endemic problems – D S

Management problems – S N O T H R L

ARTESIAN AQUIFER
Environmental Values – E D S
Vulnerability

landuse – low hydrological stress – mod Endemic problems – S C F Management problems – P B FRACTURED ROCK AQUIFER Environmental Values – D S Vulnerability

landuse – moderate – high hydrological stress – high Endemic problems – S

Management problems – S N T O D H R L

WATER QUALITY AND QUANTITY ISSUES

- S salinity
- N nitrate
- C corrosiveness
- O pesticides & other organic toxins
- T mineral toxins
- H pH
- F fluoride
- D dissilvedgases, low dissolved oxygen
- loss of pressure
- R rising water tables
- L falling water tables
- B subsidance

ENVIRONMENTAL VALUES

- E environment
- D drinking
- S stock
- I irrigation

WATER STATE OF THE PARTY OF THE

Table 59. Water quality indicators for aquifer type (McNeil & Clarke 2007).

Aquifer Type	Potential Environmental Values	Pressure	Condition	Response
Shallow alluvial (30 m)	EnvironmentDrinkingStockIrrigation	 Land clearing Development Stream regulation and irrigation Natural salinity Overuse 	 Salinity Salinity trend Sodium Adsorption Ratio (SAR) Nitrates Pesticides 	 Actions to combat salinity Control of pollutants in vulnerable areas Improved management of irrigation supplies
Deep alluvial	DrinkingStockIrrigation	Stream regulation and irrigationNatural salinityOveruse	 Salinity Salinity trend Sodium Adsorption Ratio (SAR) Corrosiveness, heavy metals and iron bacteria in the future. 	 Avoidance of unsustainable use Artificial recharge Management of soil productivity decline
Fractured Rock	DrinkingStockIrrigation	Land clearingDevelopmentNatural salinityOveruse	SalinitySodium Adsorption Ratio (SAR)Nitrates	 Control of pollutants in vulnerable areas Avoidance of unsustainable use
Artesian	DrinkingStockEnvironment	Overuse Natural salinity, corrosiveness, fluorides, possibly heavy metals, high temperatures	SalinityCorrosivenessFluoride	 Avoidance of unsustainable use Improved management of natural problems, ie replacement of corroded casings with more suitable types, dilution of high fluoride.
Coastal	EnvironmentDrinkingStockIrrigation	Land clearingOveruseDevelopmentSalinity and low pH are main natural problems	 Salinity Sodium Adsorption Ratio (SAR) Salinity trend Nitrates Corrosiveness 	 Avoidance of unsustainable use Control of pollutants in vulnerable areas Avoid dewatering acid sulphate soils

Groundwater Wetlands

10 Groundwater Wetlands

The Wetland Indicators Workshop addressed groundwater as a separate topic, in order to gain an understanding of the special requirements of this unique ecosystem. It was recognised that the groundwater contribution to surface wetlands can often be considerable and progress is being made in an attempt to understand the functioning of these GDEs with respect to their groundwater components. Surface manifestations of underground water have been discussed earlier in this report (stream base flow, perched water tables, mound springs, groundwater exchange in some lakes). The workshop also developed a conceptual model for underground wetlands i.e. those wetlands without surface breakout (Table 60).

Within Queensland, NRW has approximately 5000 bores, the majority of which are sited in the east coast basins in subartesian aquifers i.e. where water must be pumped to the surface. Monitoring of bores is undertaken by NRW regularly. Water levels are measured between weekly and quarterly, depending on the bore site and/or region. Water quality is measured on an annual or biannual basis. All sites are tested for general parameters including electrical conductivity, pH, hardness, alkalinity, TDS, anions and cations. Many bores are sampled for nutrients, and some for metals. Some bores in the coastal regions have also had conductivity profiles taken to

Table 60. Conceptual model for underground wetlands.

Groundwater (significant knowledge gaps exist)

Key Features of underground wetlands i.e. wetlands without surface breakout

Physical

- Different types of underground wetlands
 - o Subterranean karst
 - Fractured rock
 - o Alluvial hyporheic (the wetted interstitial zone among sediments below and alongside rivers)
- Porous

Biota

- Low species richness
- Unique biota (stygofauna fauna that live within groundwater systems)
- Some species are ancient surface species

Processes

- Provides wildlife refuge where it is a break out feature e.g. bird habitat
- Denitrification
- Nutrient transfer (rivers)
- Filters contaminants before delivery to groundwater/surface water

Prossures

- Water extraction influences the maintenance of supplies
- Seawater intrusion leading to impacts on the stygofauna and reduction of porosity
- Chemical pollution

Indicators

- Groundwater regime
- Water quality (saline pollution)

monitor salt-water intrusion. NRW has approximately 400 bores in the Great Artesian Basin, a selection of which are measured each year for flows as well as the standard water quality parameters.

In addition to the regular departmental bores there are also 448 salinity bores that were drilled for the NAP program. Regular monitoring was undertaken during the NAP, but their monitoring status is unknown at present. They are not currently in the departmental monitoring network.

All this data is stored on the NRW Groundwater Database which holds information on approximately 130,000 bore sites. The majority of these sites are privately owned although not all the bores are currently active. When a bore is drilled (NRW or private), water level and field water quality measurements are taken and the data is stored on the NRW database. No further information is collected on private bores, except under unusual circumstances.

Investigation of groundwater ecosystems is gradually gaining momentum in Australia (Hancock & Steward 2004). In Queensland, some monitoring work has been undertaken by NRW on the hyperheic and parafluvial zones, and bores in selected catchments by NRW. Standing water levels, and water quality parameters (electrical conductivity, pH, dissolved oxygen, redox potential, temperature, alkalinity, turbidity, pesticides, nutrients) were measured. Stygofauna and bacteria samples were also collected.

Recently an investigation into the GDEs of Stradbroke Island commenced in response to a proposal to expand the bore fields used for extraction of water to supplement water supplies on the nearby mainland. Parameters measured include biota (macroinvertebrates, fish, macrophytes, vegetation), depth, electrical conductivity, saltwater intrusion on monitoring bores and core sampling to determine the evolutionary significance of potential depth drops.

Groundwater Wetlands 14

11 Recommendations

One of the major outcomes of this project was to be a set of recommendations to inform the national review of the Matters for Target wetland indicators. As the national project is nearing completion at the same time as this project, that outcome has become somewhat obsolete. In its stead, the knowledge and information that has been gained from this project has been used to inform the national indicators project, including:

- The literature search was modified for use in the national workshop background report and incorporated into the final report, and
- The wetland classification work provided the basis for the 'Wetland Description Tool' which was delivered to the jurisdictional workshops for comment and modification.

The conceptual models that were developed in the Wetland Indicators workshop were selected intuitively, rather than by any methodical selection process. Part of the reason for this was the absence of any agreed classification system for wetlands in Queensland. Both the National Wetland Indicators project and this project see a need to develop conceptual models for all wetland types. As different pressures and stressors operate in different wetland types, this will provide a basis for understanding different wetlands and, therefore, the selection of appropriate indicators for monitoring condition. Models have been developed using pressure, stressor, response models for estuarine systems (OzEstuaries and SEAP) and are under development for bioprovincial riverine systems in Queensland (SEAP). This project recommends that the lacustrine and palustrine conceptual models be reviewed and redeveloped using the recommended classification system.

In developing the monitoring framework, one of the many points stressed was that alternative methods should be developed for application to all skill levels. This would then engage all stakeholders from community level, with relatively limited capabilities in more complex indicators, researchers, and all levels of government. This may be possible for some indicators, but it quickly became apparent that, for other indicators, this will not be possible. There are indicators that community groups or NRM regional bodies will not have the fiscal or physical resources to monitor e.g. remote sensing for both extent and

distribution, and condition. And there are some indicators that require products such as remote sensing layers that are beyond the scope of State agency purchasing power, but may be available at a national level. This project recommends that all levels of government, researchers and regional/community groups liaise closely to enhance wetland extent, distribution and condition monitoring e.g. common remote sensing layers be provided to State agencies for mapping and condition monitoring which is provided to NRM regional bodies for use in their regions; relevant State agency monitoring information be provided to NRM bodies.

This report has presented detailed information on indicators that are in use or are proposed for assessment or monitoring. It has become apparent that the selection of indicators needs to be a purpose driven exercise, and to prescribe a set of indicators in this document for monitoring could invite failure in the program to deliver accurate assessments. It is recommended that the information provided here be a starting point for selecting indicators, that conceptual models of the system under investigation be developed, and appropriate indicators be selected on the basis of purpose, scale, cost, and skill.

12 References

Abal, E.G., Bunn, S.E., and Dennison, W.C. (Eds) (2005). Healthy waterways, healthy catchments: making the connection in south east Queensland, Australia. Moreton Bay Waterways and Catchments Partnership. Queensland, Australia.

Anderson, J.R. (1993). State of the Rivers Project: Report 1. Development and validation of the methodology. Department of Primary Industries Queensland; Brisbane

ANZECC (Australian and New Zealand Environment and Conservation Council), State of the Environment Reporting Task Force (2000). *Core Environmental Indicators for Reporting on the State of the Environment*. Environment Australia, Canberra.

ANZECC & ARMCANZ (2000). Australian guidelines for water quality monitoring and reporting. Australia and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), National Water Quality Management Strategy No. 7, Canberra.

Baldwin, D.S., Nielson, D.L., Bowen, P.M., and Williams, J. (2005). Recommended Methods for Monitoring Floodplains and Wetlands. MDBC Publication No. 72/04. Murray-Darling Basin Commission, Canberra, and Murray Darling Freshwater Research Centre, Albury.

Blackman, J.G., Spain, A.V., and Whiteley, L.A. (1992). Provisional handbook for the classification and field assessment of Queensland's wetlands and deepwater habitats. Environmental Protection Agency, Queensland.

Boulton, A.J., and Brock, M.A. (1999). *Australian Freshwater Ecology. Processes and Management*. CRC Freshwater Ecology. Gleneagles Publishing, Adelaide.

Brierley, G., Fryirs, K., and Cohen, T. (1996). Development of a generic geomorphic framework to assess catchment character. Part 1. A geomorphic approach to catchment characterisation. Working Paper 9603, Macquarie University, Graduate School of the Environment.

Brierley, G.J., and Fryirs, K.A. (2005). Geomorphology and River Management: Application of the River Styles Framework. Blackwell Publications, Oxford, UK. 398pp Brierley, G.J., Fryirs, K., Outhet, D., and Massey, C. (2002). Application of the River Styles framework to river management programs in New South Wales, Australia. *Applied Geography* **22**:91-122.

Brinson, M. M. (1993). *A hydrogeomorphic classification for wetlands*. Technical Report WRP-DE-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Butcher, R. (2003). Options for the assessment and monitoring of wetland condition in Victoria. The State of Victoria, State Water Quality Monitoring and Assessment Committee.

Casanova, M.T. (1999). Plant establishment in Paroo wetlands: The importance of water regime. In 'A free-flowing river: The ecology of the Paroo River.' (Ed. R. Kingsford). National Parks and Wildlife Service, NSW.

CBD Secretariat/Ramsar Convention Secretariat (2006). *Guidelines for the rapid assessment of biodiversity in inland water, coastal and marine areas.*CBD technical Series No. 22 / Ramsar Technical report No. 1. Secretariat of the Convention on Biological Diversity (Quebec, Canada); Secretariat of the Convention on Wetlands (Ramsar, Iran, 1971) (Switzerland.).

Chessman, B.C., Growns, J.E., and Kotlash, A.R. (1997). Objective derivation of macroinvertebrate family sensitivity grade numbers for the SIGNAL biotic index: application to the Hunter River system, New South Wales. *Marine and Freshwater Research* **48**:159-172.

Chessman, B.C., Trayler, K.M., and Davis, J.A. (2002). Family- and species-level biotic indices for macroinvertebrates of wetlands on the Swan Coastal Plain, Western Australia. *Marine and Freshwater Research* **53(5)**: 919 – 930.

Chessman, B.C. (1995). Rapid assessment of rivers based on habitat-specific sampling, family level identification and a biotic index. *Australian Journal of Ecology* **20**:122-129.

Chessman, B.C. (2003). SIGNAL 2.iv. A Scoring System for Macro-Invertebrates ('Water Bugs') in Australian Rivers, User manual Version 2. Accessed from http://www.deh.gov.au/water/rivers/nrhp/signal/index.html.

References

12 References

Clarkson B.R., Sorrell B.K., Reeves P.N., Champion P.D., Partridge T.R., and Clarkson B.D. (2004). Handbook for monitoring wetland condition (Revised October 2004) Coordinated Monitoring of New Zealand Wetlands. A Ministry for the Environment Sustainable Management Fund Project (5105).

Clayton, P.D., Fielder, D.P., Howell, S., and Hill, C.J. (2006). Aquatic Biodiversity Assessment and Mapping Method (AquaBAMM): a conservation values assessment tool for wetlands with trial application in the Burnett River catchment. Environmental Protection Agency, Brisbane.

Conrick, D. (2005). *Monitoring, Evaluation and Reporting Strategy for the Queensland Wetlands Programme*. Natural Resources and Mines, Brisbane.

Conrick, D., Edgar, B., and Innes, A. (2007). Development of National Indicators for Wetland Ecosystem Extent, Distribution and Condition. Final Report. NLWRA, Canberra.

Corrick, A.H., and Norman, F.I. (1980). Wetlands of Victoria I. Wetlands and waterbirds of the Snowy River and Gippsland Lakes catchment. *Proceedings of the Royal Society of Victoria* **91**:1-15.

Cowardin, L.M., Carter, V., Golet, F.C., and LaRoe, E. T. (1979). *Classification of wetlands and deepwater habitats of the United States*. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C. 131pp.

Davis, J., Horwitz, P., Norris, R., and Chessman, B. (2001). *Monitoring Wetland Health: Are National River Health Program Protocols Applicable? Final Report*. Report prepared for National Wetlands Research and Development Program, Canberra. *Accessed from* http://www.deh.gov.au/water/wetlands/rd/monitor/

Davis, J., Horwitz, P., Norris, R., Chessman, B., McGuire, M., and Sommer, B. (2006). Are River Bioassessment Methods using Macroinvertebrates Applicable to Wetlands? *Hydrobiologia* **572(1)**:115-128.

Davis, J., Horwitz, P., Norris, R., Chessman, B., McGuire, M., Sommer, B., and Trayler, K.M. (1999). Monitoring Wetland Health: are National River Health Program protocols applicable? Wetland

Bioassessment Manual. Report prepared for National Wetlands Research and Development Program, Canberra.

Dixon, I., Douglas, M., Dowe, J., & Burrows, D. (2006). *Tropical Rapid Appraisal of Riparian Condition Version 1 (for use in tropical savannas)*. River Management Technical Guideline No. 7. Land & Water Australia, Canberra.

DSE (2005a). *Index of Stream Condition: The Second Benchmark of Victorian River Condition*. Department of Sustainability and Environment, Victoria.

DSE (2005b). *Index of Wetland Condition.*Conceptual framework and selection of measures.

Department of Sustainability and Environment,

Victoria.

DSE (2006). *Index of Wetland Condition. Review of wetland assessment methods.* Department of Sustainability and Environment, Victoria.

Duguid, A., Barnetson, J., Clifford, B., Pavey, C., Albrecht, D., Risler, J., and McNellie, M. (2002). Wetlands in the arid Northern Territory. A report to Environment Australia on the inventory and significance of wetlands in the arid NT. Parks and Wildlife Commission of the Northern Territory. Alice Springs.

Duke, N.C., Lawn, P.T., Roelfsema, C.M., Phinn, S., Zahmel, K.N., Pedersen, D.K., Harris, C., Steggles, N., and Tack, C. (2003). *Assessing historical change in coastal environments. Port Curtis, Fitzroy River estuary and Moreton Bay regions*. Final Report to the CRC for Coastal Zone Estuary & Waterway Management. Historical Coastlines Project, Marine Botany Group, Centre for Marine Studies, The University of Queensland, Brisbane. 258 pages. http://www.coastal.crc.org.au/Publications/HistoricalCoastlines.html

EHMP marine and estuarine program: http://www.ehmp.org/estuarinemarine_monitoring.html accessed 30.5.07

Environment Australia (2001). *A Directory of Important Wetlands in Australia, Third Edition*. Environment Australia, Canberra.

EPA (1999). Water Quality Sampling Manual. 3rd Edition. EPA, Brisbane.

EPA (2005a). SoE Online. Supporting information for contributing Queensland Government officers. EPA, Queensland.

EPA (2005b). Wetland Mapping and Classification Methodology. Overall Framework. A method to provide baseline mapping and classification for wetlands in Queensland. Version 1.2. Queensland Government, Brisbane.

Fabricius, K., Uthicke, S., Humphrey, C., Cooper, T., and De'ath, G. (draft-28th March 2007). *Potential water quality specific indicators for the reef Water Quality Protection Plan monitoring of estuaries and inshore coral reefs: Summary and overview of benefits and costs.* MTSRF, Townsville.

Fennessy, M.S., Jacobs, A.D., & Kentula, M.E. (2004) Review of rapid methods for assessing wetland condition. EPA/620/R-04/009. U.S. Environmental Protection Agency, Washington, D.C.

Finlayson, C.M., Grazia Bellio, M., and Lowry, J.B. (2005). A conceptual basis for the wise use of wetlands in northern Australia – linking information needs, integrated analyses, drivers of change and human well-being. *Marine and Freshwater Research* **56**:269-277.

Golus, C., Burns, C., and Westlake, M. (2006). Wetland Assessment Technique. Version 3.1. WetlandCare Australia. Ballina, Australia.

Green D.L. (1997). Wetland Classification. Ecological Services Unit. In. *NSW Wetland Management Policy* – *Management Guidelines*. (Ed. Department of Land and Water Conservation) Parramatta.

Grinter, S., and Clarke, R. (2006). Ambient surface water quality in Queensland 2002-2005. Summary report. Queensland Department of Natural Resources, Mines and Water, Indooroopilly.

Hancock, P., and Steward, A. (2004). *Pioneer groundwater biota pilot study. Review of sampling methods for groundwater fauna and bacteria*. Aquatic Ecosystems Technical Report No. 49. Natural Resources and Mines, Indooroopilly.

Healthy Reefs for Healthy People: Key Indicators http://www.healthyreefs.org/indicators_key_indicator_ introduction.html Hill, A.L., Semeniuk, C.A., Semeniuk, V., and del Marco, A. (1996). Wetlands of the Swan Coastal Plain. Volume 2a. Wetland Mapping, Classification and Evaluation, Main Report. Water Authority of Western Australia and Department of Environmental Protection, Perth.

Jaensch, R. (1999). The status and importance of south-west Queensland's wetlands. Report by Wetlands International-Oceania to Environmental Protection Authority.

Jansen, A., Robertson, A., Thompson, L., and Wilson, A., (2005). *Rapid appraisal of riparian condition, version 2*. River Management Technical Guideline No. 4A. Land & Water Australia, Canberra.

Johnson, P., and Gerbeaux, P. (2004). *Wetland types in New Zealand*. Department of Conservation, New Zealand.

Kingsford, R.T., and Porter, J. (1999). Wetlands and waterbirds of the Paroo and Warrego rivers. In 'A free-flowing river: The ecology of the Paroo River.' (Ed. R. Kingsford). National Parks and Wildlife Service, NSW.

Ladson, A., and White, L. (1999). *Index of Stream Condition: reference manual*. Department of Natural Resources and Environment, Melbourne.

Langbein, W.B., and Iseri, K.T. (1960). *General introduction and hydrologic definitions manual of hydrology. Part 1. General surface-water techniques.* U.S. Geological Survey. Water-Supply Paper 1541-A 29pp. (cited in Cowardin et al. 1979)

LEB website, http://www.lebmf.gov.au/publications/index.html#progress accessed 29.5.07

Maher, M., Hawkins, E., and Conrick, D. (2006). Wetland Indicators Workshop Report. Queensland Wetlands Programme. Australian Government, Canberra and Queensland Government, Brisbane.

Marshall, J., McGregor, G., Marshall, S., Radcliffe, T., and Lobegeiger, J. (2006b). *Development of conceptual pressure-vector-response models for Queensland's riverine ecosystems*. Natural Resources, Mines & Water, Indooroopilly.

References

12 References

Marshall, J., Prior, A., Steward, A., and McGregor, G. (2006c). Freshwater bioregionalisation of Queensland's riverine ecosystems. Development of interim freshwater biogeographic provinces. Natural Resources, Mines & Water, Indooroopilly.

Marshall, J.C., Sheldon, F., Thoms, M., and Choy, S. (2006a). The macroinvertebrate fauna of an Australian dryland river: spatial and temporal patterns and environmental relationships. *Marine and Freshwater Research* **57(1)**: 61-74.

McDonald, R.C., Isbell, R.F., Speight, J.G., Walker, J., and Hopkins, M.S. (1990). *Australian Soil and Survey. Field Handbook. Second Edition*. Inkata Press, Melbourne.

McKenzie, L.J., Campbell, S.J., and Roder, C.A. (2003). *Seagrass-Watch: manual for mapping seagrass resources by community (citizen) volunteers.* 2nd edition. DPI, Cairns and CRC Reef, Townsville.

McNeil, V., and Clarke, R. (2007). State of the Environment Report. Inland Waters – Groundwater Quality. Background report. Natural Resources & Water, Indooroopilly.

MDBC (2004). *Sustainable Rivers Audit Program.* Murray-Darling Basin Commission, Canberra.

MEA (2005). Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Wetlands and Water – Synthesis. World Resources Institute, Washington DC.

Mitsch, W.J., and Gosselink, J.G. (2000). *Wetlands*. 3rd edition. John Wiley & Sons, Inc. New York.

NLWRA (2005). *Monitoring and Evaluation: Queensland Regional Trials, Phase 1 Report.* National Land & Water Resources Audit, Canberra Australia.

Norris, R.H., Dyer, F., Hairsine, P., Kennard, M., Linke, S., Merrin, L., Read, A., Robinson, W., Ryan, C., Wilkinson, S., and Williams, D. (2007). Assessment of River and Wetland Health: A framework for comparable assessment of the ecological condition of Australian rivers and wetlands. Australian Water Resources 2005, National Water Commission.

NRW (2005). Water quality rapid assessment (QRAM) sampling: AEMF004. Version 1.0. Natural Resources & Water, Brisbane.

NRW (2006a). Identification and enumeration of aquatic macroinvertebrates to family level: AEMF006. Version 2.0. Natural Resources & Water, Brisbane.

NRW (2006b). Curation of macroinvertebrates in the laboratory: AEML002. Version 1.0. Natural Resources & Water, Brisbane.

NRW (2006c). Live-pick macroinvertebrates QRAM: AEMF015. Version 1.0. Natural Resources & Water, Brisbane.

NRW (2006d). Sampling aquatic macroinvertebrates using a dip net: AEMF005. Version 2.0. Natural Resources & Water, Brisbane.

NRW (2006e). Aquatic habitat identification: AEMF009. Version 1.0. Natural Resources & Water, Brisbane.

NRW (2006f). Curation of macroinvertebrates in the field: AEMF010. Version 1.0. Natural Resources & Water, Brisbane.

NRW (2006g). Environmental measurements (QRAM): AEMF001. Version 1.0. Natural Resources & Water, Brisbane.

NRW (2006h). Quality assurance of taxonomic identification of aquatic macroinvertebrates to family level (QRAM): AEMQ001. Version 1.0. Natural Resources & Water, Brisbane.

NRW (2006i). quality assurance of live-picked aquatic macroinvertebrates in the field (QRAM): AEMQ002. Version 5.0. Natural Resources & Water, Brisbane.

NWI website, http://www.nwc.gov.au/nwi/index.cfm accessed 24.1.07

Schaffelke, B., Mellors, J., and Duke, N.C. (2005). Water quality in the Great Barrier Reef region: responses of mangrove, seagrass and macroalgal communities. *Marine Pollution Bulletin* **51**:279-296.

Manager Annual Manage

Scheltinga, D.M., Counihan, R., Moss, A., Cox, M., and Bennett, J. (2004) *Users' guide to estuarine, coastal and marine indicators for regional NRM monitoring. Report to DEH, MEWG, ICAG. Revised version.* Coastal CRC, Brisbane.

Scheltinga, D.M., and Moss, A. (in prep.a). *Trialling resource condition indicators for the Queensland coastal zone*. Environmental Protection Agency, Indooroopilly.

Scheltinga, D.M., and Moss, A. (in prep.b). Queensland's Stream and Estuary Assessment Program (SEAP). II Estuarine Assessment. Environmental Protection Agency, Indooroopilly.

Simpson, J., Norris, R., Barmuta, L., and Blackman, P. (1997). *Australian River Assessment System. National River Health Program Predictive Model Manual.* CRC for Freshwater Ecology, Canberra.

Simpson, J.C., and Norris, R.H., (2000). Biological assessment of river quality: development of AUSRIVAS models and outputs', in *Assessing the Biological Quality of Fresh Waters. RIVPACS and other Techniques.* (Eds J.F. Wright, D.W. Sutcliffe and M.T. Furse). Proceedings of an International Workshop, 16-18 September 1997, Freshwater Biological Association, United Kingdom.

Sinclair Knight Merz, Environmental Water Requirements of Groundwater Dependent Ecosystems (2001). Environmental Flows Initiative Technical Report Number 2. Commonwealth of Australia, Canberra.

Smith, M.J., and Storey, A.W. (2000). Project DIBM3: Evaluation/Design and Implementation of Baseline Monitoring. Phase 1, Final Report. Southeast Queensland Regional Water Quality Management Strategy.

Souter, R., and Mackenzie, R. (2006). *Estuarine, Coastal and Marine Issues and Indicators Workshop. Workshop Report.* Coastal CRC, Brisbane, and Fari Australia.

Spencer, C., Robertson, A.I., and Curtis, A. (1998). Development and testing of a rapid appraisal wetland condition index in south-eastern Australia. *Journal of Environmental Management* **54**:143-159.

State of Queensland and Commonwealth of Australia (2003). Reef Water Quality Protection Plan; For catchments adjacent to the Great Barrier Reef World Heritage Area. Queensland Department of Premier and Cabinet, Brisbane

Sweatman, H. (2007). *Coral reef health indicators and thresholds of concern. Draft report.* Marine and Tropical Sciences Research Facility, Townsville.

Timms, B.V. (1999). Local runoff, Paroo floods and water extraction impacts on the wetlands of Currawinya National Park. In 'A free-flowing river: The ecology of the Paroo River.' (Ed. R. Kingsford). National Parks and Wildlife Service, NSW.

Timms, B.V., and Boulton, A.J. (2001). Typology of arid-zone floodplain wetlands of the Paroo river (inland Australia) and the influence of the water regime, turbidity, and salinity on their aquatic invertebrate assemblages. *Archiv fur Hydrobiologie* **153(1)**:1-27.

UNESCO (2003). The 1st UN World Water Development Report: Water for People, Water for Life. UNESCO Publishing/Berghahn Books. http://www.unesco.org/water/wwap/wwdr1/table_contents/index.shtml

van Dam, R.A., Camilleri, C., and Finlayson, C.M. (1998). The potential of rapid assessment techniques as early warning indicators of wetland degradation: a review. *Environmental Toxicology and Water Quality* **13(4)**:297-312.

Water Framework Directive website, http://ec.europa.eu/environment/water/water-framework/info/intro_en.htm, accessed 19.6.07

Wetland.edu website, http://www.wetlandsedu.org.au/ accessed 19.6.07

Wright, J.F., Furse, M.T., and Armitage, P.D. (1993). RIVPACS – a technique for evaluating the biological quality of rivers in the U.K. *European Water Pollution Control*, **3(4)**:15-25.

References

Appendix 1 Literature Search URLs

The information highlighted throughout this report can be sourced through the links below.

Reference	URL
ANZECC SoE Core Indicators	http://www.deh.gov.au/soe/publications/indicators/pubs/core-indicators.pdf
AquaBAMM	http://www.epa.qld.gov.au/register/p02017aa.pdf
AusRivAS	http://ausrivas.canberra.edu.au/
AusRivAS Physical	http://www.environment.gov.au/water/publications/environmental/rivers/nrhp/
Assessment	protocol-1/index.html
Australian Water Resources	http://www.nwc.gov.au/www/html/733-australian-water-resources.asp
2005	
AUSWAMP	http://www.science.murdoch.edu.au/centres/aer/publications/WetBioassManual.
(Davis et al. 1999)	pdf
AUSWAMP	http://www.environment.gov.au/water/publications/environmental/wetlands/pubs/
(Davis et al. 2001)	monitor.pdf
AUSWAMP	http://www.springerlink.com/content/d1871l3404t5667q/?p=001bd62931a447ae
(Davis et al. 2006)	ae5b00f96bb57b93π=7
Baldwin et al. (2005)	http://publication.mdbc.gov.au/product_info.php?products_id=153
Brinson 1993	http://el.erdc.usace.army.mil/wetlands/pdfs/wrpde4.pdf
Butcher (2003)	http://www.vcmc.vic.gov.au/Web/Docs/SWQMACWetlandFinalReport.pdf
CBD Secretariat/Ramsar	http://www.ramsar.org/lib/lib_rtr01.pdf
Convention Secretariat (2006)	indep in a management of the m
Clarkson et al. 2004	http://www.landcareresearch.co.nz/research/biodiversity/landscapesprog/
Startigett et all 2001	handbook2004.pdf
Cowardin et al.1979	http://el.erdc.usace.army.mil/emrrp/emris/emrishelp2/cowardin_report.htm
CRC Freshwater Ecology	http://www.ewater.canberra.edu.au/domino/html/Site-CRCFE/CRCFE_WebSite.nsf
DIWA	http://www.deh.gov.au/water/wetlands/database/directory/index.html
Duguid 2002	http://www.nt.gov.au/nreta/wildlife/nature/aridwetlands.html
East Asian-Australasian	http://www.deh.gov.au/biodiversity/migratory/waterbirds/infosrn1.html
shorebird site network	
European Water Framework	http://ec.europa.eu/environment/water/water-framework/index_en.html
Directive Fennessy et al. (2004)	http://www.epa.gov/owow/wetlands/monitor/RapidMethodReview.pdf
Green 1997	http://www.dnr.nsw.gov.au/water/pdf/wetclass.pdf
Great Barrier Reef Water	http://www.reefplan.qld.gov.au/
Quality Protection Plan	http://www.reeipian.qia.gov.au/
Health Reefs for Healthy	http://www.healthyreefs.org/indicators_framework.html
People: Key Indicators	mareaters_nament
Index of Stream Condition	http://www.vicwaterdata.net/vicwaterdata/data_warehouse_content.
(Data Warehouse – 2004 ISC	aspx?option=5
report)	
Index of Stream Condition	http://www.dse.vic.gov.au/DSE/wcmn202.nsf/LinkView/
(DSE webpage	111DC6CA25723E001B5622E2435AAD7CBD0079CA256FEB001C70C6
Index of Wetland Condition	http://www.dse.vic.gov.au/CA256F310024B628/0/E280AA426603FD63CA2570C
(DSE web page)	8007EE8F5/\$File/IWC+Conceptual+Framework+and+Selection+of+Measures.pdf
Indicator methods	http://www.nrm.gov.au/publications/factsheets/me-indicators/index.html
	or http://www.nrm.gov.au/me/index.html
Jaensch 1999	http://www.epa.qld.gov.au/wetlandinfo/site/factsfigures/SummaryInformation/
	WetlandHabitats.html

Reference	URL
Johnson and Gerbeaux 2004	http://www.doc.govt.nz/upload/documents/science-and-technical/Wetlands BWa.pdf
LEB website	http://www.lebmf.gov.au/
Matters for Target	http://www.nlwra.gov.au/
Narran Lakes project	http://hds.canberra.edu.au/narran/index.html
National NRM M&E	http://www.nrm.gov.au/publications/frameworks/me-framework.html
Framework	http://www.him.gov.au/publications/hameworks/me-hamework.html
National Water Initiative	http://www.nwc.gov.au/nwi/index.cfm
NLWRA	http://www.nlwra.gov.au/
NLWRA Monitoring and Evaluation Trials Queensland Region Phase 1 Report (NLWRA 2005)	http://archive.nlwra.gov.au/Publications_and_Tools/Project_Reports/Monitoring_and_Evaluation_Trials_New_South_Wales_Region_Phase_2_Report/indexdl_5355.aspx
NRHP	http://www.environment.gov.au/water/index.html
Qld Freshwater EHMP	http://www.ehmp.org/freshwater_monitoring.html
Ramsar classification	http://www.ramsar.org/ris/key_ris.htm#type
Rapid Appraisal of Riparian Condition (RARC)	http://www.lwa.gov.au/downloads/publications_pdf/PR050994.pdf
Regional Ecosystems (Qld EPA)	http://www.epa.qld.gov.au/nature_conservation/biodiversity/regional_ecosystems/
Riverstyles®	http://www.riverstyles.com/
Semeniuk 1996	http://portal.environment.wa.gov.au/portal/page?_pageid=55,5625145&_dad=portal&_schema=PORTAL
SIGNAL Index	http://www.environment.gov.au/water/publications/environmental/rivers/nrhp/
(Chessman 2003)	pubs/signal.pdf
Spencer et al 1998	http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WJ7-45SJDWY-5&_user=2627777&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000058262&_version=1&_urlVersion=0&_userid=2627777&md5=fa2b720806868b5e42efd4c31be7931b
State of the Rivers (Qld)	http://www.nrw.qld.gov.au/science/state_of_rivers/index.html
Sustainable Rivers Audit (SRA)	http://www.mdbc.gov.au/SRA
SWAMPS (Chessman et al. 2002)	http://www.publish.csiro.au/nid/126/paper/MF00079.htm
Tasmanian CFEV	http://www.dpiw.tas.gov.au/inter.nsf/WebPages/CGRM-7JHVSJ?open
Tropical Rapid Appraisal of Riparian Condition (TRARC)	http://www.lwa.gov.au/downloads/publications_pdf/PR061169.pdf
USEPA: Methods for	http://www.epa.gov/waterscience/criteria/wetlands
Evaluating Wetland Condition	
Van Dam et al. (1998)	http://www3.interscience.wiley.com/cgi-bin/abstract/10008660/ABSTRACT
Waterwatch	http://www.waterwatch.org.au/index.html
Waterwatch technical manual	http://www.waterwatch.org.au/publications/index.html
WetlandCare Australia	http://www.wetlandcare.com.au/

Appendix 1 Literature Search URLs

Appendix 2 Wetland classification systems

1. Ramsar Classification System for Wetland Type

2. A Directory of Important Wetlands in Australia (Agreed by NRMMC Taskforce on Wetlands and Waterbirds June 2004)

1. Ramsar Classification System

Marine/Coastal Wetlands

- A Permanent shallow marine waters in most cases less than six metres deep at low tide; includes sea bays and straits.
- **B Marine subtidal aquatic beds**; includes kelp beds, sea-grass beds, tropical marine meadows.
- C Coral reefs.
- **D** Rocky marine shores; includes rocky offshore islands, sea cliffs.
- **E Sand, shingle or pebble shores**; includes sand bars, spits and sandy islets; includes dune systems and humid dune slacks.
- **F Estuarine waters**; permanent water of estuaries and estuarine systems of deltas.
- G Intertidal mud, sand or salt flats.
- H Intertidal marshes; includes salt marshes, salt meadows, saltings, raised salt marshes; includes tidal brackish and freshwater marshes.
- Intertidal forested wetlands; includes mangrove swamps, nipah swamps and tidal freshwater swamp forests.
- J Coastal brackish/saline lagoons; brackish to saline lagoons with at least one relatively narrow connection to the sea.
- K Coastal freshwater lagoons; includes freshwater delta lagoons.
- Zk(a) Karst and other subterranean hydrological systems, marine/coastal

Inland Wetlands

- L Permanent inland deltas.
- M Permanent rivers/streams/creeks; includes waterfalls.
- N Seasonal/intermittent/irregular rivers/streams/
- O Permanent freshwater lakes (over 8 ha); includes large oxbow lakes.
- P Seasonal/intermittent freshwater lakes (over 8 ha); includes floodplain lakes.
- Q Permanent saline/brackish/alkaline lakes.
- R Seasonal/intermittent saline/brackish/alkaline lakes and flats.
- Sp Permanent saline/brackish/alkaline marshes/ pools.
- Ss Seasonal/intermittent saline/brackish/alkaline marshes/pools.
- **Tp Permanent freshwater marshes/pools**; ponds (below 8 ha), marshes and swamps on inorganic soils; with emergent vegetation water-logged for at least most of the growing season.
- Ts Seasonal/intermittent freshwater marshes/pools on inorganic soils; includes sloughs, potholes, seasonally flooded meadows, sedge marshes.
- U Non-forested peatlands; includes shrub or open bogs, swamps, fens.
- Va Alpine wetlands; includes alpine meadows, temporary waters from snowmelt.
- Vt Tundra wetlands; includes tundra pools, temporary waters from snowmelt.

- WATER STATE OF THE PARTY OF THE
 - W Shrub-dominated wetlands; shrub swamps, shrubdominated freshwater marshes, shrub carr, alder thicket on inorganic soils.
 - **Xf Freshwater, tree-dominated wetlands**; includes freshwater swamp forests, seasonally flooded forests, wooded swamps on inorganic soils.
 - **Xp Forested peatlands**; peatswamp forests.
 - Y Freshwater springs; oases.
 - Zg Geothermal wetlands

Zk(b) – Karst and other subterranean hydrological systems, inland

Note: "floodplain" is a broad term used to refer to one or more wetland types, which may include examples from the R, Ss, Ts, W, Xf, Xp, or other wetland types. Some examples of floodplain wetlands are seasonally inundated grassland (including natural wet meadows), shrublands, woodlands and forests. Floodplain wetlands are not listed as a specific wetland type herein.

Human-made wetlands

- 1 Aquaculture (e.g., fish/shrimp) ponds
- **2 Ponds**; includes farm ponds, stock ponds, small tanks; (generally below 8 ha).
- 3 Irrigated land; includes irrigation channels and rice fields.
- **4 Seasonally flooded agricultural land** (including intensively managed or grazed wet meadow or pasture).
- 5 Salt exploitation sites; salt pans, salines, etc.
- 6 Water storage areas; reservoirs/barrages/dams/impoundments (generally over 8 ha).
- 7 Excavations; gravel/brick/clay pits; borrow pits, mining pools.
- 8 Wastewater treatment areas; sewage farms, settling ponds, oxidation basins, etc.
- 9 Canals and drainage channels, ditches.
- Zk(c) Karst and other subterranean hydrological systems, human-made

Appendix 2 Wetland classification systems

Marine/Coastal Wetlands			
Saline Water	Permanent	< 6m deep	A
		Underwater vegetation	В
		Coral Reefs	С
	Shores	Rocky	D
		Sand, shingle or pebble	Е
Saline or brackish water	Intertidal	Flats (mud, sand or salt)	G
		Marshes	II
		Forested	I
	Lagoons		J
	Estuarine waters		F
Saline, brackish or fresh water	Subterranean		Zk(a)
Fresh water	Lagoons		K

Marine/Coastal Wetlar	nds			
Fresh water	Flowing water	Permanent	Rivers, streams, creeks	М
			Deltas	L
			Springs, oases	Y
		Seasonal/intermittent	Rivers, streams, creeks	N
	Lakes and pools	Permanent	>8ha	О
			<8ha	Тр
		Seasonal/intermittent	>8ha	Р
			<8ha	Ts
	Marshes on inorganic soils	Permanent	Herb-dominated	Тр
		Permanent/Seasonal/ intermittent	Shrub-dominated	W
			Tree-dominated	Xf
		Seasonal/intermittent	Herb-dominated	Ts
	Marshes on peat soils	Permanent	Non-forested	U
			Forested	Хр
	Marshes on inorganic or peat soils	High altitude (alpine)		Va
		Tundra		Vt
Saline, brackish or	Lakes	Permanent		Q
alkaline water		Seaonal/intermittent		R
	Marshes and pools	Permanent		Sp
		Seaonal/intermittent		Ss
Fresh, saline, brackish	Geothermal	eothermal		Zg
or alkaline water	Subterranean			Zk(b)

WATER ST. WATER ST.

Appendix 2 Wetland classification systems

2. Directory of Important Wetlands of Australia (DIWA) classification

A - Marine and Coastal Zone wetlands

- Marine waters; permanent shallow waters less than six metres deep at low tide; includes sea bays, straits
- Subtidal aquatic beds; includes kelp beds, seagrasses, tropical marine meadows
- Coral reefs
- Rocky marine shores; includes rocky offshore islands, sea cliffs, intertidal rock platforms
- Sand, shingle or pebble beaches; includes sand bars, spits, sandy islets
- Estuarine waters; permanent waters of estuaries and estuarine systems of deltas
- Tidal mud, sand or salt flats; intertidal or supratidal
- Tidal marshes; includes intertidal or supratidal saltmarshes, salt meadows, saltings, brackish and freshwater marshes
- Tidal forested wetlands; includes intertidal or supratidal mangrove swamps, nipa/palm swamps, freshwater swamp forests
- Brackish to saline lagoons and marshes with one or more relatively narrow connections with the sea; includes tidal inlets periodically blocked by sand
- Freshwater lagoons and marshes in the coastal zone
- Non-tidal freshwater forested wetlands, permanently or temporarily flooded
- Karst or subterranean wetlands with a connection to the marine environment, includes anchialine systems

B – Inland wetlands

- Permanent rivers and streams; includes waterfalls, permanent waterholes in river reaches
- Seasonal and irregular rivers and streams; includes minor anabranches, braided channel complexes
- Inland deltas (permanent and temporary)
- Riverine floodplains; includes temporarily flooded river flats, river basins, grassland, savanna and palm savanna
- Permanent freshwater lakes (> 8 ha); includes large oxbow lakes
- Seasonal/intermittent freshwater lakes (> 8 ha), floodplain lakev s, billabongs, claypans
- · Permanent saline/brackish lakes
- Seasonal/intermittent saline lakes
- Permanent freshwater ponds (< 8 ha), marshes and swamps on inorganic soils; with emergent vegetation waterlogged for at least most of the growing season
- Seasonal/intermittent freshwater ponds and marshes on inorganic soils; includes claypan complexes, seasonally flooded canegrass/grass swamps, sedge, rush and reed swamps
- Permanent saline/brackish marshes
- · Seasonal saline marshes
- Freshwater shrub swamps; shrub-dominated marsh on inorganic soils, includes lignum, ti-tree swamps
- Freshwater swamp forest, seasonally flooded forest, wooded swamps, on inorganic soils; includes river red gum forest, paperbark, coolibah and belah/sheoak swamps
- Peatlands; forest, shrub or open bogs
- Alpine wetlands; includes alpine meadows and pools, temporary waters from snow melt
- Freshwater springs, oases and rock pools; includes gnamma holes, mineralised mound and artesian springs
- Geothermal wetlands
- Inland, subterranean karst wetlands

WATER STATE OF THE PARTY OF THE

C – Human-made wetlands

- Water storage areas; reservoirs, barrages, hydroelectric dams, impoundments (generally > 8 ha)
- Ponds, including farm ponds, stock ponds, small tanks (generally < 8 ha)
- Aquaculture ponds; fish ponds, shrimp ponds
- Salt exploitation; salt pans, salines
- Excavations; gravel pits, borrow pits, mining pools
- Wastewater treatment; sewage farms, settling ponds, oxidation basins
- Irrigated land and irrigation channels, canals or ditches; includes rice fields
- Seasonally flooded arable land, farm land
- Canals, stormwater drains
- Wetlands constructed for biodiversity benefit; includes for habitat creation, and water quality improvement or maintenance

Attachment A Wetland Indicators Workshop Report

September 2006

Mary Maher, Mary Maher & Associates
Emma Hawkins, Lloyd Consulting
Diane Conrick, Department of Natural Resources & Water

Acknowledgements

This document is the proceedings and findings of a workshop to scope and agree on the key indicators for monitoring wetlands extent and condition in Queensland. The workshop was designed by the workshop facilitator, Mary Maher, and Project Leader, Diane Conrick, in consultation with Mike Ronan of the Environmental Protection Agency and Bruce Gray of the Department of the Environment, Heritage, Water and Arts. The participants at the workshop are acknowledged and thanked for their attendance at the workshop. This document records your contributions.

The Environmental Protection Agency funded Kate Moore of the University of Queensland to illustrate the conceptual models developed by the workshop participants (Figures 4, 5, 6, 7 and Appendices F and G). The symbols used are courtesy of the Integration and Application Network (ian.umces.edu/symbols/), University of Maryland Center for Environmental Science.

Contents

1 Executive Summary	167
2 Introduction	168
2.1 Background information	168
2.2 The Wetland Indicators project	168
2.3 The workshop report	168
3 Background to the Experts' Workshop	169
4 Building the Indicator Framework	170
4.1 Considerations for defining indicators	170
4.1.1 Classification into wetlands types and sub-types	170
4.1.2 Indicators 'fit for purpose'	170
4.1.3 Spatial scale	171
4.1.4 Temporal scale	171
4.1.5 Practicality: Skill level and cost requirements	171
4.2 Wetland classification and building the indicators framework	172
4.3 Generic and specific indicators	172
5 The Indicator Framework	173
5.1 Wetland indicator identification framework	173
5.2 Wetland indicator considerations – a worked example	174
6 Lacustrine Wetlands	175
6.1 Lacustrine conceptual model	175
6.2 Lacustrine sub-type conceptual models	179
6.2.1 Coastal dune lakes eg. Blue Lake, Stradbroke Island (window lake)	179
6.2.2 Terminal depression lakes	179
6.2.3 Depression lakes (inland, non-arid)	180
6.2.4 Artificial lakese.g. Water supply dam	181
6.2.5 Arid-zone saltwater river-fed lakes	181
6.2.6 Inland salt lakes	182
7 Palustrine Wetlands	182
7.1 Palustrine conceptual models	182
7.2 Palustrine sub-type conceptual models	186
7.2.1 Coastal forest swamps e.g. Melaleuca, Casuarina	186
7.2.2 Coastal grass-sedge swampse.g. Bulkuru sedge	187
7.2.4 Artificial (bore drains)	188
7.2.5 Natural groundwater springs	188
7.2.6 Herbs and forbs	189
7.2.7 Freshwater meadows	189

8 Groundwater	190
9 Other Key Discussion Points	191
9.1 Characterising wetlands	191
9.1.1 Reference condition	191
9.1.2 Value judgements – setting environmental values for management	191
9.2 Risk management approaches	191
9.3 Remote methods or ground testing – when and why?	191
9.4 Extent of the wetlands	191
9.5 Users' needs and capabilities	192
10 Summary	192
11 Way Forward	193
Attachment List of Figures	
Figure 1. Indicator specification.	172
Figure 2. Indicator framework.	173
Figure 3. Worked example of applying the matrix for a set indicator over a range of purposes	174
Figure 4. Lacustrine wetland (wet phase) conceptual model	177
Figure 5. Lacustrine wetland (dry phase) conceptual model	178
Figure 6. Palustrine wetland (wet phase) conceptual model	184
Figure 7. Palustrine wetland (dry phase) conceptual model	185
Attachment List of Appendices	
Appendix A: Workshop Program – June 8 & 9, 2006	194
Appendix B: Participant List	195
Appendix C: Presentations	197
Appendix D: Workshop Groups	212
Appendix E: Palustrine/Lacustrine Definitions	214
Appendix F: Lacustrine Conceptual Models	216
Appendix F: Palustrine Conceptual Models	222

1 Executive Summary

The Queensland Wetlands Programme is a joint initiative of the Australian and Queensland Governments to support projects and programs that will result in long-term benefits to the sustainable use, management, conservation and protection of Queensland wetlands. The 'Scoping Study for Monitoring of Wetlands Extent and Condition' project was developed to support the outcomes of two other Programme projects: The development of a Wetlands Inventory Database, and the baseline resource condition monitoring program for the Queensland Wetlands Programme Monitoring, Evaluation and Reporting Strategy (MER Strategy).

This report presents the results of the one and a half day experts' workshop held in Brisbane 8-9 June 2006. Participants included representatives from a wide range of government, academia, consulting and NRM groups from Queensland and elsewhere in Australia.

The aim of the experts' workshop was to scope and agree on the key indicators for monitoring wetlands extent and condition in Queensland. The workshop participants identified five key areas requiring consideration when identifying wetland indicators (see section 4). The five areas of consideration are:

- Classification wetlands types and sub-types.
- Purpose baseline condition and trend, cause and effect, or management responses.
- Spatial scale individual, regional, state, national or international.
- Time scale short, medium, or long term.
- Practicality skill level required, and cost.

The workshop discussion resolved that the framework of indicators would include a generic suite of indicators applicable to all wetlands, and a set of indicators tailored for subtypes of wetlands within defined climatic regions (section 4).

The report presents the workshop results which were:

- a framework for indicator identification (section 5);
- conceptual models developed for two of the three wetland types: lacustrine, and palustrine (sections 6 and 7 respectively);

- conceptual models for subtypes of lacustrine and palustrine types (sections 6.2 and 7.2 respectively);
- · accompanying descriptors for these types and subtypes which form candidate indicators depending on the framework of determining factors for the selection process.

The process of developing indicators for lacustrine, palustrine and groundwater wetlands involved constructing a generic conceptual model of a wetland, and identifying a list of hypothetical indicators (see sections 6, 7 and 8). Following this, conceptual models were constructed for subtypes of wetlands, with the key features, pressures and a list of initial indicators for these sub-types discussed

The workshop produced a number of insights around the development of an indicator framework for wetland extent and condition:

- Wetland indicators must have a defined purpose. The indicator and assessment method must be tailored to meet this purpose.
- The level of information required to be produced by the indicator must be defined in terms of temporal and spatial scale.
- The appropriateness of the level of skill required and cost-effectiveness of the assessment methods are critical determining factors, in developing an indicator framework.
- There is a risk in using descriptive elements as indicators. In some instances, however, descriptors may be able to function as indicators.
- · An indicator framework will include a matrix of generic and specific indicators.
- A level of background knowledge is required, in order to accurately assess the condition and extent of a wetland, with regard to the individual wetland cycle, or regional climatic system.
- Conceptual models will be developed.
- There is a possibility of taking a risk based approach.
- Types of indicators could align with the three elements of pressure, vector, and response.

Through the workshop process, conceptual models were constructed for the following lacustrine wetland sub-types (see section 6):

- coastal dune lakes;
- terminal depression lakes;

- depression lakes (inland, non-arid);
- · artificial lakes;
- arid-zone, saltwater, river-fed lakes; and
- inland salt lakes.

Conceptual models were also constructed for the following palustrine wetland sub-types (see section 7):

- · coastal forest swamps;
- coastal sedge swamps;
- inland arid-zone swamps;
- artificial (bore drains);
- natural groundwater springs;
- herbs and forbs; and
- freshwater meadows.

Other key discussion points (section 9) looked at the challenges around characterising wetlands, wetland indicators for risk management approaches, the preference for remote methods or groundtesting, problems of defining the extent of wetlands, and identifying and prioritising users' needs and capabilities.

To progress this scoping work further, participants agreed there is a need for a commitment from the State and Federal Governments in terms of financial and human resource contributions, and that regional involvement would be an integral aspect of this process. It was also suggested that the conceptual models for the wetland types and sub-types would be further developed with the assistance of specialists before undergoing a peer review process.

It was agreed that participants would be sent the key findings/outcomes of the workshop, and be given the opportunity to comment on the draft report. In order to foster ongoing information sharing and discussion on the topics raised in the workshop, an email network is to be established. A desired outcome of this information sharing is a complete database of potential assessment methods in use throughout Australia.

It was noted that workshop participants may be interested in further involvement through small group workshops based around key themes.

2 Introduction

2.1 Background information

The Queensland Wetlands Programme is a joint initiative of the Australian and Queensland Governments to support projects and programs that will result in long-term benefits to the sustainable use, management, conservation and protection of Queensland wetlands. It is funded through two subprograms: the Great Barrier Reef Coastal Wetlands Protection Program, and the Natural Heritage Trust Wetlands Programme.

The Queensland Environmental Protection Agency (EPA) is the lead State agency with support from the Departments of Natural Resources and Water (NRW), Primary Industries and Fisheries (DPI&F), and Local Government, Planning, Sport and Recreation (DLGPS&R). The Australian Government is represented by the Department of Environment and Heritage (DEH) and the Great Barrier Reef Marine Park Authority (GBRMPA).

2.2 The Wetland Indicators project

The 'Scoping Study for Monitoring of Wetlands Extent and Condition' project was developed to support the outcomes of two other Programme projects: The development of a Wetlands Inventory Database, and the baseline resource condition monitoring program for the Queensland Wetlands Programme Monitoring, Evaluation and Reporting Strategy (MER Strategy).

This project aims to provide an overall strategy to develop appropriate indicators for assessing Queensland wetland extent and condition through a process of review and consultation. The project has involved an extensive review of existing information, research and practices, and an experts' workshop. The workshop was aimed at providing the platform for ongoing discussion and information sharing between wetland experts across Australia. The final task of the project is to inform the national review of the existing 'Matters for Target' wetland indicators.

2.3 The workshop report

This report is structured differently to the workshop agenda and outcomes, in that the framework was delivered in the final sessions of the workshop after the development of the relevant conceptual models and much discussion around the development of indicators. It is presented first in this report as it was seen to underpin the validity of the process of developing conceptual models and selecting indicators.

3 Background to the Experts' Workshop

This report presents the results of the one and a half day experts' workshop held in Brisbane 8-9 June 2006. The workshop agenda is included in Appendix A. Participants included representatives from a wide range of government, academia, consulting and NRM groups from Queensland and elsewhere in Australia (see Appendix B).

The aim of the experts' workshop was to scope and agree on the key indicators for monitoring wetlands extent and condition in Queensland. A workshop trigger paper was circulated prior to the workshop to orient participants.

The workshop was designed to focus on three wetland types: lacustrine, palustrine and groundwater. The workshop program consisted of a series of brief presentations by wetland specialists from across Australia. The speakers presented material ranging from general information on techniques for defining indicators to more specific information about the Queensland Wetlands Programme (see Appendix C). The presentation sessions were to provide important information, develop interest, and orient participants to the task of scoping indicators for wetlands extent and condition for lacustrine, palustrine and groundwater wetlands.

A second feature of the structure was the use of model-building exercises where participants constructed and tested 'conceptual models' of wetland processes and mapped the impact of the different drivers and pressures for each. The participant groups for lacustrine and palustrine wetland sub-types are included in Appendix D. The insights and results from these exercises highlighted the challenges of wetland indicator identification, while producing some potential indicators. Definitions from the literature for Lacustrine and Palustrine wetlands are in Appendix E. As an aid to

understanding wetland type and selecting indicators, the conceptual models developed in the workshop were illustrated (Figures 4, 5, 6, 7, and Appendices F and G).

Wetlands are very complex and the task put to the workshop participants to identify indicators was a difficult one. There are many different types of wetlands, and many different processes and pressures acting in each each wetland. Given these difficulties, it is a credit to the participants that there were clear achievements from the workshop which will take forward the understanding of wetland function and provide a consistent framework with which investigators can work.

This report presents the workshop results, which were;

- A framework for indicator identification (Section 5).
- Conceptual models developed for two of the three wetland types: lacustrine and palustrine (sections 6 and 7 respectively).
- Conceptual models for subtypes of lacustrine and palustrine types (sections 6.2 and 7.2, Appendices F and G, respectively).
- Accompanying descriptors for these wetland types and sub-types which form candidate indicators depending on the framework of considerations, or determining factors, for the selection process.

4 Building the Indicator Framework

4.1 Considerations for defining indicators

The workshop included a presentation outlining criteria for a list of desired properties. The following list of potential properties or attributes of wetland indicators was provided (see Appendix C5):

- Suitable for use within multiple Natural Resource Management processes.
- Capacity to be grouped into a suite of indicators for use at a range of spatial scales from local to national and international.
- · Cost-effective.
- Efficient in terms of time requirements.
- SMART: smart, measurable, accurate, relevant, and timely.
- Capacity to be tested using existing technical capabilities.

The group exercise of constructing a conceptual model of a lacustrine wetland produced a number of key questions and challenges in defining wetlands indicators. Subsequent sessions on palustrine and groundwater wetlands saw a refinement and reinforcement of the importance of these considerations as determining factors for identification of indicators.

These considerations were grouped into five areas:

• Classification: wetlands types and sub-types.

 Purpose: baseline condition and extent, cause and effect, or management

responses.

• Spatial Scale: individual, regional, state, national

or international.

• Time Scale: short, medium, or long term.

 Practicality: skill level required (minimum, intermediate, or advanced), and

economic feasibility (low, medium,

or high cost).

4.1.1 Classification into wetlands types and sub-types

Wetlands are inherently dynamic systems, undergoing cycles of wet and dry phases, and a suite of processes, and changes. As a result of this flux, the classification of a wetland into lacustrine, palustrine and groundwater types is somewhat superficial, and inaccurate. A more accurate description would depict lacustrine, palustrine and groundwater wetlands as positions along a wetland function spectrum. The grouping of wetlands into these classifications is of less relevance within Australia, as there exists much more of a continuance between wetland types than in other parts of the world (namely North America and Europe).

One example of this continuum of Australian wetlands is the lacustrine wetland, which, after an extended dry phase, exhibits palustrine characteristics. Further to this, many lacustrine and palustrine wetlands are closely linked and, in some cases, dependant on groundwater wetlands.

The workshop discussion concluded that while this classification of wetland types (lacustrine, palustrine and groundwater) may not reflect current knowledge and research on wetland types, it is useful for grouping wetlands into broad types for the purposes of this exercise.

Regional climate and weather systems and the local geological features have the potential to significantly impact a wetland, to the point of creating wetlands featuring a unique system of processes, functions and cycles. This is of most significance in the process of interpreting information from indicators. The risk of grouping wetlands into types and sub-types is that the interpretation of this information may be inaccurate if background information on the individual wetland is not known. The requirement for wetland-specific information is further discussed in section 9.5.

4.1.2 Indicators 'fit for purpose'

Potential pathways, or uses, of the indicator framework were outlined in a workshop presentation as (see Appendix C9):

- The potential to be linked to management actions.
- The potential to show the condition and the key driver, pressure or processes causing change.

Further to this, it was noted that if process drivers are used as indicators, the linkages between processes and features or changes must be understood.

• The potential for indicators to be grouped into components and services.

A key finding from the workshop discussion of indicator selection was the need for clarity of the purpose, or end user, of an indicator in order to ensure an appropriate indicator and assessment method is defined. It was noted that indicators could deliver information for a number of purposes including: an indicator of baseline condition and extent, a description of drivers and associated changes within the wetland, and assessment of condition, pressures and responses to inform decision making for management responses. An example of this can be seen in section 4.3.

It was noted that the primary focus and driver of the Queensland Wetlands Programme is to monitor the extent and condition of wetlands in order to inform management action targets and resource condition/assessment targets. The indicators developed for this process must therefore be refined to meet this purpose. Further to this, it was acknowledged that the indicator framework and learnings from this process may go beyond the Programme.

Additional potential purposes for indicators included assessing condition and disturbance, prioritising investment, satisfying legal requirements/compliance, and to gain an improved understanding of wetland processes.

4.1.3 Spatial scale

In order to accurately define wetland indicators, the spatial scale for assessment should be defined. There is a need to clarify whether the indicator would be used generically for a suite of wetlands at the regional, state, national or international level, or if the indicators are being defined for individual wetlands, or specific climatic regions. The indicator and the assessment method may vary according to the chosen spatial scale.

4.1.4 Temporal scale

Timing of monitoring is one major consideration. Another is the time scale and its impact on indicator selection. There is a need to have a comprehensive understanding of the cyclic changes of the wetlands over time. One suggestion was that ecological indicators be limited to those elements that are considered permanent. Indicators may be selected to work best for different time periods – short, medium and long term, or because they are not greatly impacted by time considerations. Questions of desired temporal scale will affect the indicators selected and monitoring method employed.

The time scale being addressed is a crucial element in assessing wetland condition and extent. It was noted that the temporal scale of the information required will affect the assessment method used, and that there is a need to have a comprehensive understanding of the cyclic changes of the wetland being assessed over time. It was suggested that ecological indicators be limited to those elements that are considered permanent e.g. vegetation, geomorphology.

4.1.5 Practicality: Skill level and cost requirements

The workshop discussion resolved that indicators and monitoring methods should be developed for a range of potential monitoring bodies:

- landholders/managers and community members/ groups;
- local governments;
- regional Natural Resource Management (NRM) bodies;
- state governments;
- Commonwealth government; and
- university research programs.

At the community level, basic testing, photographic assessment and shadow monitoring were suggested methods. At the higher levels, it was noted that operators would need to have more advanced skills and an understanding of the link between the patterns and processes, rather than focusing solely on patterns.

The use of remote sensing was discussed as a feasible method of monitoring certain indicators, with the notion that where feasible and warranted, satellite data should be verified through on-ground monitoring.

4.2 Wetland classification and building the indicators framework

The initial level of classification is related to geographic division. Following this, wetlands are classified based on the dominant nature of the most prominent ecological function. The three wetland types used for the purposes of the workshop are:

- lacustrine wetlands;
- palustrine wetlands; and
- groundwater wetlands.

Lacustrine wetlands are water dominated, although they may have fringing vegetation. There are few lakes in Queensland, making the type easy to identify. Palustrine wetlands are vegetation dominated and there is much more variation in the goemorphic setting and disturbance of these wetlands compared to lacustrine wetlands. Groundwater wetlands considered for this exercise were artesian water and underground water.

4.3 Generic and specific indicators

The workshop discussion resolved that the framework of indicators would include:

• a generic suite of indicators applicable to all

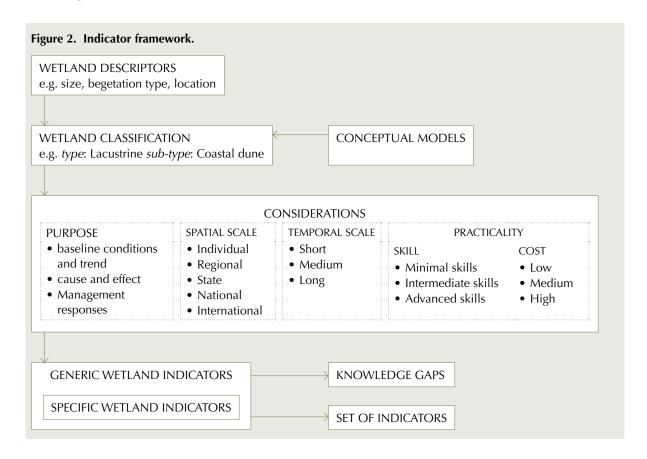
wetlands; and

• a set of indicators tailored for subtypes of wetlands within defined climatic regions.

It was noted that the generic set of indicators may prove useful as descriptive indicators, in that they could identify elements that would produce expected ecological services or functions.

The process of developing indicators for lacustrine and palustrine wetlands involved constructing a conceptual model of a wetland, then using this model to identify a list of potential indicators. Following this, conceptual models were constructed for subtypes of wetlands, with the key features, pressures and a list of initial indicators for these sub-types discussed.

Through the process of working on conceptual models and sets of indicators for sub-types and climatic zones, generic indicators applicable to all wetland types may be identified. Figure 1 illustrates an indicator specification.


In addition to the requirement of a specific framework of indicators for different wetland sub-types, it was noted that individual indicators may require specific knowledge and interpretation for different wetland types, subtypes and climatic regions.

Generic indicators for all wetlands e.g. surface water area (m2)										
		land indica pecies and a			lustrine wet vegetation t	Groundwater wetland indicators e.g. stygofauna abundance				
dune lakes, terminal depression lakes, forest swa depression lakes (inland, non-arid), artificial arid-zone						tland sub-type sedge swamps icial bore dra erbs and forbs	Identified Groundwater wetland sub-types: karst, fractured rock, alluvial including hyporheic.			
Sub A	Sub A	Sub A	Sub A	Sub A	Sub A	Sub A	Sub A	Sub A	Sub A	Sub A
Sub B	Sub B	Sub B	Sub B	Sub B	Sub B	Sub B	Sub B	Sub B	Sub B	Sub B
Sub C	Sub C	Sub C	Sub C	Sub C	Sub C	Sub C	Sub C	Sub C	Sub C	Sub C
Sub D	Sub D	Sub D	Sub D	Sub D	Sub D	Sub D	Sub D			
Sub E	Sub E	Sub E	Sub E	Sub E	Sub E	Sub E	Sub E			
Sub F	Sub F	Sub F	Sub F	Sub F	Sub F	Sub F	Sub F			
Region 1	Region 2	Region 3	Region 4	Region 1	Region 2	Region 3	Region 4	Region 1	Region 2	Region 3

5 The Indicator Framework

5.1 Wetland indicator identification framework

One of the major outcomes of the workshop was the development of a framework (Figure 2), which will provide a pathway from wetland descriptors to a set of appropriate indicators to address the needs of the monitoring task.

5.2 Wetland indicator considerations a worked example

A worked example is shown in Figure 3. The example given, of the measurement of water cover (m2), shows that the same indicator may be applied in different ways for a number of purposes, and further, that the different purposes will highlight different determining factors. An appropriate assessment method cannot be decided until these defining factors are identified.

For example, for the purpose of assessing baseline

condition and trend*, the information required would relate to a small temporal and spatial scale, and would be best served by on-ground testing by community members or local government. However, in order to assess drivers and change (**), or to identify management actions (***), the temporal and spatial scales of required information would presumably be greater, and may be better served through remote sensing. This would not necessarily require a high level of skill, but would most likely incur significantly greater cost.

The shaded boxes indicate pertinent levels of

Figure 3. Worked example of applying the matrix for a set indicator over a range of purposes.

Determining Factors	Clas	sifica	ation	Pi	urpo	se		Spatial Scale Temporal Scale		Practic Skill levels			cality Cost							
Parameters	L	Р	GW	C&T	D-Δ	Mgt	Ind	Reg	St	Nat	I/N	S	М	L	Bas	I/M	Adv	L	М	Н
Water cover* Method A				*														L		
Water cover** Method B					**								L							
Water cover*** Method C						***														

application

Time Scale Classification L: lacustrine S: short **P:** palustrine M: medium

GW: groundwater L: long term

C&T: baseline condition and trend **Purpose Practicality**

Ind: individual

D- Δ : driver and change • Skill/assessment facility Bas: basic

I/M: intermediate Mgt: management response Adv: advanced

Spatial Scale Reg: regional Cost L: low

M: Medium St: state Nat: national H: high I/N: international

6 Lacustrine Wetlands

6.1 Lacustrine conceptual model

This conceptual model aims to be a generic description which can be modified for different regions and wetland subtypes. It is represented diagrammatically in Figures 4 (wet phase) and 5 (dry phase).

Lacustrine wetlands

Key Features

Physical

- Surface area ≥8ha
- If <8ha, then must be deeper than 2 metres (at deepest point when full)
- Sediment substrate
- Can have connectivity with other water bodies (leading to species dispersal)
- Spatial complexity/ habitat complexity
- · Submerged debris as habitat
- Bathymetry shape of lake bed
- Presence/absence of islands within the water body

Hydrology

- Water dominated
- Water source: groundwater/overland flow/ precipitation/channel overflow
- Water inflow regime: pulsing of water, or single large influx event
- Evaporation
- Mixing by wind
- · Velocity/water movement/flow rates/flushing
- Stratification
- Wetting/drying fluctuation may occur

Physico-chemical

- Water regime and chemistry
- Nutrients input: overland flow/allochthonous/ groundwater
- Sediment and nutrient input
- · Water quality
- Ionic composition

- · Organic matter
- pH
- Light climate variable clear/turbid/tannin stained/ stratification
- Interaction between plants and light climate

Biota

- Without emergent vegetation over most of the wetland extent
- Submerged vegetation/ macrophyte vegetation (depth limited – generally < 3m, but can be much deeper if turbidity is very low)
- Riparian buffer zones
- Allochthonous input (organic material produced by photosynthesis outside the wetland e.g. leaf litter)
- Autochthonous input (organic material produced by photosynthesis within the wetland e.g. aquatic plants)
- Primary production light/temperature controlled
- Macrofauna in and on water (birds, fish, turtles, frogs etc)
- Nesting birds affecting nutrients
- Macroinvertebrates (grazers at edges)
- Extent (depth and duration of water affecting vegetation)
- Dynamic exchange between benthic, littoral, and pelagic zones
- Algae
- Phytoplankton
- Algal 'bath tub rings' at the water line, particularly in arid zones
- Attached or benthic algae
- Zooplankton
- Bacterioplankton
- Autotrphic
- Heterotrophic
- Benthic microbiota

Processes

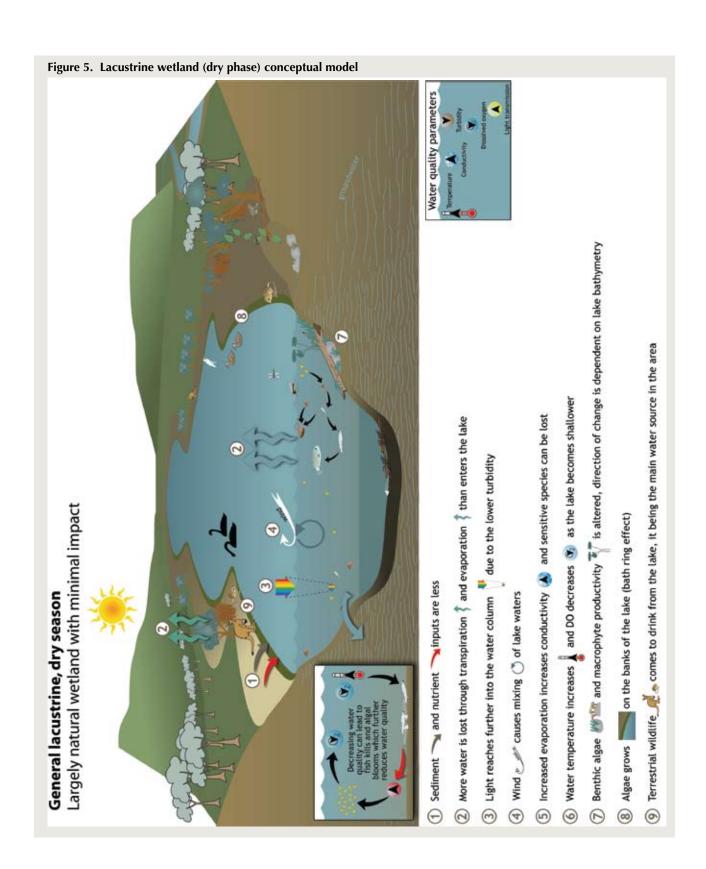
- Sedimentation
- Biogeochemical cycling of nitrogen, phosphorus and carbon
- Temporal fluctuations (including seasonal/cyclical)
- Bush fire: successional phenomena life cycle phases hydrological variation giving successional

ecology and morphology

• Set of meta-stable states or continuous variation

Drivers

- Hydrology
- Water depth
- Groundwater exchange
- Source
- Evaporation
- Surface run-off
- Connectivity
- Seasonality
- Duration and frequency
- · Flushing regime
- Light
- Turbidity
- Stratification
- Tannins/colour
- Water quality
- pH
- Conductivity and ionic composition
- Nutrients and organic matter
- Hardness
- Dissolved oxygen
- Habitat complexity
- Within lake microhabitats
- Lake geomorphology and shape
- · Landscape/catchment position
- Sediment/substrate composition


Pressures

- Biota (cover and type)
- Water regime
- Timing
- Flow duration, size, frequency
- · Acidic conditions
- Waterbody margins
- Nutrients
- Deposition
- Weeds
- Exotic animals
- Human impacts
- Lake bed cropping/grazing when dry

Potential Indicators

- Photic depth
- Nutrient status
- Salinity
- Aerial extent (remote sense based) fluctuations, aerial extent of wetted area
- Turbidity (couple remote sensing and on-ground data at selected sites)
- Fringing vegetation fluctuations in response to impacts e.g. river red gum deaths
- Changes in amount of surface area that falls into certain categories defined by ratio between euphotic depth and total depth.
- Oxygen profile the point at which oxygen falls below thresholds for diverse macroinvertebrate populations
- Those that do/don't have enough oxygen all day, and those that have enough for part of the day
- Weediness (proportion of weeds in aquatic vegetation)
- Biota diversity and abundance
- Spatial extent, specifically in terms of existence value.
- Spatial extent and events which may change the surface area:
- Water quantity
- Hydrological fluctuations
- Water quality
- Range of ecological functions
- Trophic status
- Chlorophyll a
- Algal blooms
- Extent 'reference extent model' for types of lacustrine
- Hydrological regime disturbed/modified/ deviation from natural
- Deviation from expected hydrology
- Deviation from expected riparian vegetation
- Landscape function analysis: catchment contribution, erosion, irrigation
- Use of the wetland (for recruitment, roosting, moulting, migration stopover)

Figure 4. Lacustrine wetland (wet phase) conceptual model Water quality parameters Sediments sand nutrients senter the lake through runoff and control primary productivity within the lake (3) Water enters the lake through rainfall, overland runoff, overbank flow and riverine inflow Largely natural wetland with minimal impact 0 (7) Stratification w can occur when there is limited mixing 6 Light attentuation 🖑 is low with increased turbid runoff and is lost through transpiration ? and evaporation? Allochthonous inputs of plant and animal matter General lacustrine, wet season Allochthonous inputs by aquatic macrophytes 5 Wind & J causes mixing O of lake waters (8) Lake water is exchanged with groundwater Food web within the lake pH Controlled by geology, soils, water (sources and organic processes 9

6.2 Lacustrine sub-type conceptual models

Conceptual models were constructed for the following lacustrine wetland sub-types: coastal dune lakes, terminal depression lakes, depression lakes (inland, non-arid), artificial lakes, arid-zone saltwater river-fed lakes, and inland salt lakes. Illustrations for these wetland types are in Appendix F.

6.2.1 Coastal dune lakes

eg. Blue Lake, Stradbroke Island (window lake)

Key Features

- Physical
 - High stability, low variability
 - Regional watertable fluctuates slowly
 - High transparency (light may reach bottom)
 - Silica sand substrate
 - Deep
 - Majority of three dimensional habitat is emergent macrophytes

Hydrological

- Groundwater exchange
- Precipitation runoff and percolation through sand

• Physico-chemical

- pH slightly acid 5-6
- Conductivity very low (<100µS/cm (Na, Cl))
- pH of groundwater 7.5 (key to ecology)
- Low nutrients
- Low productivity

• Biota

- · Adapted to slightly acidic water
- Low species richness and abundance (low biomass, rare species)

Pressures

- Water regime change
- · Acidic condition change
- Nutrient status change
- Vegetation clearing and dune movement
- Tourism

Ecological responses

- pH and conductivity change could equate to a change in community structure, and loss of the current ecological system
- Change in water level can lead to change in threedimensional habitat (reeds), which supports biota
- Loss of unique organisms and influx of ubiquitous organisms

Knowledge gaps

- Acidity (not pH) an understanding of the conditions that lead to acidity.
- · Infiltration effects

Measurement

• There is a possibility of remote sensing to show the extent of the water body.

6.2.2 Terminal depression lakes

Key Features

Wet phase

- Physical
 - Shallow 0-2 m, large extent (>8 Ha)
 - Unlikely to stratify (low mixing)
 - 2.5 m sediment, up to 100,000 years deposition
 - Channel network, overflow outlet
 - Hydrological
 - Main input is river inflow containing nutrients, carbon, sediment and organisms

Physico-chemical

• Highly turbid (light penetration 0-2 cm)

• Biota

- Autotrophic at margins (primary producers: algae, plants)
- Heterotrophic in main water body (consumers)
- Large populations of birds and fish

Dry phase

- Physical
 - Large areas of bare cracking clays

- Soil turnover (important)
- Hydrological
- Can dry completely
- Biota
- Aquatic organisms take refuge in the sediments
- Increase in terrestrial fauna
- Lignum becomes habitat for terrestrial animals, including ferals

Pressures

- Hydrological
- Quantity and duration of water retention has the most significant effect
- Flow regime change
- Reduced extent
- Reduced waterbird, fish populations
- Reduction in amplitude and frequency of flows
- Sedimentation change

Indicators

- Hydrological regime: temporal and spatial
- Model the relationship between inflows and extent of water body
- Vegetation extent and structure, lignum regeneration
- Breeding success of colonial waterbirds
- Fish population species and abundance
- Water temperature and quality
- Total grazing pressure

6.2.3 Depression lakes (inland, non-arid)

Key Features

Depression in the floodplain

Wet phase

- Physical
 - 8-9m deep
 - Depositional environment (fine sediment substrate)
 - Can have levees
 - At low water levels, the process of wind re-suspension of bottom sediments is significant

Habitats reset by large overbank flow events

• Hydrological

- Stratification can occur
- Sources: local storm events (direct precipitation and overland flows), overbank flows from local channels (less frequent but can be largest)
- Groundwater interaction
- Seasonal draw down
- Influenced by local geography (height of surrounding landscape) and access to overbank flows

· Physico-chemical

- Variable turbidity
- Turbidity influenced by nature and frequency of overbank flows

• Biota

- Very productive biota, fish, birds, turtle etc
- High diversity
- Fringe riparian vegetation
- Macrophyte beds and emergent vegetation in the littoral zone

Dry phase

- Physical
 - Settling of sediment in bottom of depression, resulting in changes in the bathymetry

• Hydrological

- No open water
- Physico-chemical
 - Dissolved oxygen <8% saturation
 - Organic substrate becomes anoxic
- Biota
- Floating aquatic weed infestations
- Change in faunal composition to more tolerant taxa

Drivers

- Sediment and nutrient loads and nature of delivery
- Hydrological regime including groundwater (inflow/outflow/volume)
- Water quality
- Timing of inputs
- Connectivity with other waterbodies

• Aquatic plant community (including phytoplankton and algae)

Indicators

- Open water coverage
- Changes in aquatic fauna and flora composition and abundance
- Light
- Dissolved oxygen

6.2.4 Artificial lakes

e.g. Water supply dam

The environmental and ecological values of this lacustrine sub-type are a low priority, so position within the catchment/landscape was not assessed.

Key Features

Full dam

- Large impounded surface area
- Mixing (by wind)

Low dam

- Settling of sediments behind dam wall
- Reduction in biota composition and abundance
- Increased grazing pressures around dam margins leading to nutrient loading

Pressures

 Hydrological regime (raising and lowering of dam level)

Drivers

- Function e.g. water supply (as opposed to environmental value)
- Level of function (potable vs. irrigation)
- Ability to support threatened species
- Hydrological regime (volume and timing of filling and release)

Responses

- Water quality degradation
- Increase in algae and nutrients
- Increase in turbidity
- Decrease in biota

Indicators

• Water quality

- Biota composition
- Indicators specific to threatened species
- Spatial extent of wetted area (remote sensing)

6.2.5 Arid-zone saltwater river-fed lakes

Key Features

- Large terminal wetlands
- Three phases: drought/flooding/drying
- High evaporation rates
- Low groundwater and rainfall inputs
- Connectivity to other waterbodies supplies majority of input
- Low soil permeability
- Basin shape provides the habitat complexity
- · Salinity gradients govern the biota

Drivers

- Climate
- Rainfall
- Temperature
- Wind
- Lack of high riparian vgetation
- Hydrology (externally driven)
- Connectivity
- Soil type
- Basin shape
- Water chemistry

Pressures

• Flood harvesting (external to site)

Responses

- · Extent and duration of inundation
- Vegetative zone shift
- Salinity (more saline)
- Reduction in fish and bird populations

Indicators

- Biota at a 'whole of system' scale (fish, waterbirds, plants)
- Long-term monitoring (due to short term noise)

6.2.6 Inland salt lakes

Key Features

- Physical
 - Salt crust in dry phase
 - Sand and clay substrate
 - High temperature
- Hydrological
 - Low rainfall
 - Highly variable hydrological regime
 - Source: overland flow (groundwater interaction unknown)
 - Filling and drying cycles
 - Physico-chemical
 - Turbidity/salinity cycle
- Biota
- Boom and bust cycles
- Limited riparian vegetation (e.g. saltbush)

Drivers

- Water quality
 - Salinity/turbidity cycle
 - Colour
 - pH
 - Temperature
 - Nutrients
 - Dissolved oxygen
 - Light
- Hydrology (externally driven)
- Connectivity
- Soil type
- Basin shape
- Water chemistry

Pressures

- Reduction in filling events (climate change)
- Increased grazing
- Extractive industries (unknown)

Indicators

- Rainfall
- Evaporation

- Hydrological regime
- Biota (invertebrates, fish, waterbirds)
- Water quality
 - Salinity/turbidity cycle
 - Nutrients
 - Dissolved oxygen

7 Palustrine Wetlands

7.1 Palustrine conceptual models

This conceptual model aims to be a generic description which can be modified for different regions and wetland subtypes. It is represented diagrammatically in Figures 6 (wet phase) and 7 (dry phase).

Palustrine wetlands

Key Features

Physical

- Area is not defined
- Generally shallow (Max depth 2m)
- If water is ponded, it may only be a small amount which often dries up
- Gradual edge/bank

Hydrology

- Typically have dominant drying phase
- Sources: groundwater, local, floodplain, riverine
- Groundwater/surface exchange

Physico-chemical

- Variable water quality
- Organic loading
- Soil condition is important (peat, acid sulfate soils)

Biota

- Vegetation dominated (palms, trees, shrubs, grass/ sedges, aquatic vegetation)
- Shrubs (e.g. lignum) in water

- Vegetation usually perennial
- Can be submerged macrophyte beds (but not the only type of vegetation)
- Boom and bust cycles in ephemeral wetlands
- Fauna

Processes

- Allochthonous input (organic material produced by photosynthesis outside the wetland e.g. leaf litter)
- Autochthonous input (organic material produced by photosynthesis within the wetland e.g. aquatic plants)
- Continuum of wetland types from lacustrine to palustrine, at varying stages of filling and drying which may or may not relate to seasonal fluctuations
- Fire (particularly in peat areas)
- · Ecosystem services
- Significant number are related to connectivity across water bodies e.g. fish migration (fish breeding area)
- Filtering
- Sediment retention
- Material flux/balance/polishing
- Need to define how long a dry area remains a wetland
- Soil conditions (acid sulfate soils); Peat condition
- · Salt water intrusion
- Biogeochemical cycling of nitrogen, phosphorus and carbon
- Flooding

Drivers

- Hydrological regime, periodicity of inundation, seasonal drawdown
- Fire
- Connectivity/barriers
- Sea level rise
- · Feral animals
- Water quality
- Salinity
- Temperature
- Weeds

Pressures

- Fire
- Grazing
- Climate change
- Drainage
- Hydrology changes
- Hydrological regime

Potential Indicators

- Extent and structure of groundcover (vegetation health index)
- Benthic biota
- Fish kills
- Organic loading
- Flow rate in bores and springs
- Extent
- Vegetation change
- Fauna habitat
- Diversity and abundance of the fauna
- · Critical life stages
- Health of trees/cover (die back)

Knowledge Gap

• Extraction, discharge and recharge

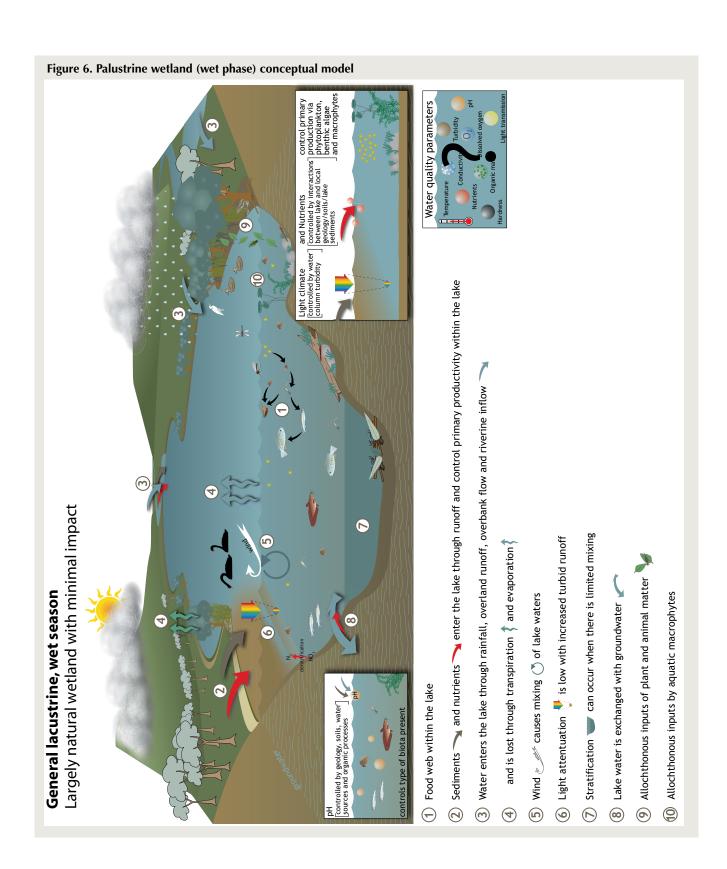


Figure 7. Palustrine wetland (dry phase) conceptual model Water quality parameters Benthic algae 👑 and macrophyte productivity 🔻 is altered, direction of change is dependent on lake bathymetry 6 Water temperature increases 🙏 and DO decreases 🔇 as the lake becomes shallower Increased evaporation increases conductivity
 and sensitive species can be lost (2) More water is lost through transpiration of and evaporation of than enters the lake 3 Light reaches further into the water column ue to the lower turbidity Largely natural wetland with minimal impact (8) Algae grows on the banks of the lake (bath ring effect) Sediment and nutrient inputs are less General lacustrine, dry season 4 Wind & causes mixing O of lake waters 0

7.2 Palustrine sub-type conceptual models

Conceptual models were constructed for the following palustrine wetland sub-types: coastal forest swamps, coastal sedge swamps, inland arid zone swamps, artificial bore drains, natural groundwater springs, herbs and forbs, and freshwater meadows. Illustrations for these wetland types are in Appendix G.

7.2.1 Coastal forest swamps

e.g. Melaleuca, Casuarina

Key Features

Physical

- Shallow
- Seasonal inundation
- Located
 - · Behind backdunes and saltmarsh
 - Depressions near rivers and estuaries
 - Floodplain depressions
 - Poorly drained lowland
- Can have old creek channels and deep holes
- Bed can be impermeable, excluding groundwater exchange
- · Has a peat layer

Hydrology

- With/without groundwater inputs
- Short drying phase
- Source: overland flow

Physico-chemical

- Nutrients cycling important
- · Acid sulfate soils
- Saline ground water
- Influence of high spring tides/flooding

Biota

- · Dominated by trees
- Good biodiversity (fish, birds, mosquitoes, frogs, reptiles, mammals, insects)
- Melaleucas:
 - Rich source of pollen and nectar for local and migratory birds, insects, bats and

possums

- Koalas feed on leaves
 - Important refuges in drought
- Understorey can be variable dependant on
 - Water depth
 - Canopy cover
 - Water quality
 - Groundwater
 - pH
 - Salinity
 - Phragmites if saline; Blechnum fern if more freshwater

Processes

- Fire
- Hydrological regime: flow, water depth, duration, (seasonally variable)
- Return flows back to river providing nutrients, colour
- Flood attenuation, water filtering
- Fish habitat, fish nursery areas

Drivers

- Hydrology (hydroperiod extent and frequency of inundation)
- Water depth
- Fire
- Water quality
- Salinity
- pH

Pressures

- Clearing
- Draining
- Grazing
- Acid sulfate soils
- Bark removal
- Fire (frequency and intensity)
- Weed invasion
- Channelisation of meanders in creeks
- Saline intrusion
- Rising sea levels

7.2.2 Coastal grass-sedge swamps

e.g. Bulkuru sedge

Key Features

Physical

- Large waterbodies (100-1000 ha)
- Old marine plains
- Fine sediments

Hydrology

- · Marine influenced
- · Source: local catchment, overbank flow
- Rarely groundwater exchange
- Seasonal drawdown to drying in some

Physico-chemical

• Potential acid sulfate soils

Biota

- Treeless
- Emergent and aquatic macrophytes
- Allochthonous dominated
- Low number of fish species, high abundance
- Seasonally highly productive invertebrates are boom and bust
- Has breeding aggregations (waterbirds)
- Fish nursery

Drivers

- Hydrology
- Climate
- Rainfall

Pressures

- Grazing
- Weeds
- Fire
- Connectivity (bunding)
- Tail-water inputs
- Sediment loads
- Climate change
- Feral animals (pigs)
- Organic loading by excess growth of grasses drying dry phase
- Ponded pastures (with/without bunding)

7.2.3 Inland arid-zone swamps

(Extensive in channel country)

Key Features

Physical

- Geomorphology: variable size and shape
- Shallow
- Defined by vegetation (may also be bare e.g. claypans)
 - Shrub: lignum
 - Grass: cane grass
 - Wooded: Coolibah, River Red Gum, Black Box, Casuarina

Hydrology

- Sources: precipitation and local catchment (all types), overbank flow (Shrub, Wooded)
- No groundwater interaction

Physico-chemical

Variable turbidity

Biota

- Lignum swamps important for waterbirds
- Boom and bust (invertebrates)
- Important habitat for terrestrial grazers and stock when dry

Drivers

- Climate (evaporation)
- Soil type
- Connection/isolation from river
- Fire
- Water quality
- Water depth

Pressures

• Grazing (unsustainable)

Impacts

- Selective removal of vegetation by stock
- Soil compaction, pugging

Responses

 Long term changes to vegetation (structure, recruitment, composition)

 Loss of fauna habitat leading to reduced recruitment/nesting

Indicators

- Vegetative cover (on-ground; remote sensing not appropriate)
- Presence/absence of seedlings (giving a health index for vegetation)
- Pug density (stock rates)
- Stock track density
- Stocking rates (stock specific)
- Impact of native animals (how do we distinguish impacts from livestock?)
- Presence/absence of palatable species

7.2.4 Artificial (bore drains)

Key Features

Physical

- 0-10 ha around the spring or bore head, and may include a long, narrow channel covering many kilometres
- Groundwater (Great Artesian Basin (GAB)) fed systems of purpose-managed drainline
- Refugia

Hydrology

- Open water
- Pond or pool on the surface
- Water level constant
- No drying phase

Biota

- Floating macrophytes, emergent reeds, sedges
- Surrounding vegetation often contains weeds/ferals

Drivers

- May mimic natural systems
- Water quality
 - Temperature
 - Water chemistry
 - Salinity, calcium, sodium

Pressures

- Cap and pipe program
- Stock
- Recreation

Impacts

- Change floodplain dynamics, flows, and sediment storage
- Declining water quality in the tailwater
- Reduced GAB water pressure
- Cap and pipe program

Indicators

- Flow rate and pressure
- Extent
- Vegetation change (terrestrial and aquatic)
- Bird, fish populations
- Tourist visitation

7.2.5 Natural groundwater springs

Key Features

Physical

- Generally isolated and localised systems
- Different types
 - Break of slope (fractured rock)
 - Watertable induced (due to fluctuations in groundwater)
 - Mound springs (mostly fed by artesian water)

Hydrology

- Source:
 - Break of slope: local catchment
 - Watertable induced: regional water
 - Mound springs: sub-artesian

Biota

• High level of endemic organisms (fish, crustacea, snails, invertebrates)

Drivers

- Hydrology
- · Water quality
- Extent and structure of vegetation
- Extent of inundation area

Pressures

- Mound springs:
 - Grazing (domestic, native, feral)
 - Agricultural development
 - Fire
 - Tourism
 - Drawdown (agricultural, mining)
 - Excavations and modifications

Indicators

- Flow rate
- Salinity (water quality)
- Temperature
- Flow extent/inundation area
- Wetting/drying cycles

7.2.6 Herbs and forbs

Key Features

Physical

- Small
- Shallow (<0.5 m deep)
- Low relief
- Clay/sand base
- Seasonal/intermittent

Hydrology

- Source: precipitation
- Generally no interaction with groundwater

Physico-chemical

• Freshwater

Biota

- Herb dominated, annuals
- Turnover in species
- Refugia from predation

Pressures

- Grazing and cutting
- Pugging
- Cropping and leveling
- Weed invasion
- Fire

Indicators

- Vegetation assessment (wet and dry phases)
- Weediness
- Grazing pressure (remote sensing)

7.2.7 Freshwater meadows

Key Features

Physical

- Coastal, close to tidal influences
- Similar to 'Herbs and Forbs'
- < 0.5 m deep

Hydrology

- Exist as a result of water logging (groundwater)
- Localised run-off

Physico-chemical

- Periodic inundation by salt water
- · High organic matter
- Potential for acid sulfate soils

Biota

- Mangroves and saltmarsh nearby
- Fish nursery
- Uniform grass (herbs and forbs) growth

Drivers

- Hydrologic regime
- Vegetation gradient (terrestrial to marine)

Pressures

- Human impact (people, urbanisation, grazing)
- Soil compaction
- Plant loss
- Nutrients increase
- Increase in open water
- Weeds
- Climate change (sea level rise)
- Vegetation clearing
- Cultivation
- Fire
- Ponded pasture

Indicators

- Ground cover change and extent
- Benthic biota
- Fish kills

This wetland sub-type was subsequently merged with the Herbs and Forbs sub-type.

8 Groundwater

Significant knowledge gaps exist

Key Features of underground wetlands

i.e. wetlands without surface breakout

Physical

- Different types of underground wetlands
- Subterranean karst
- Fractured rock
- Alluvial hyporheic (the wetted interstitial zone among sediments below and alongside rivers)
- Porous

Biota

- Low species richness
- Unique biota (stygofauna fauna that live within groundwater systems)
- Some species are ancient surface species

Processes

- Provides wildlife refuge where it is a break out feature e.g. bird habitat
- Denitrification
- Nutrient transfer (rivers)
- Filters contaminants before delivery to groundwater/surface water

Pressures

- Water extraction influences the maintenance of supplies
- Seawater intrusion leading to impacts on the stygofauna and reduction of porosity
- Chemical pollution

Indicators

- Groundwater regime
- Water quality (saline pollution)

9 Other Key Discussion Points

9.1 Characterising wetlands

Managing wetlands requires setting a management purpose. The workshop facilitated a discussion of the options of understanding and defining baseline condition by use of:

- pristine 'reference' condition as the basis of comparison;
- ecological character of a wetland based on identified values; or
- an ecosystem services approach.

Reference condition was discussed in detail. Ecological character and ecosystem services were mentioned but not expanded upon as an alternative approach to the reference condition approach.

9.1.1 Reference condition

- Use of reference condition is a challenge because it downplays the intrinsic value of the majority of wetlands which are modified rather than pristine. The reference catchment may be on a different flooding trajectory to the sampled catchment, and therefore not provide an accurate reference. It was noted that a very broad definition of reference can be used, which will identify large impacts, or alternatively, a higher level of detail in the reference model could be used to pick up more subtle changes.
- Within the referential approach, there is a need to account for natural envelopes of variability, equally important in temporal elements. There is a need to know where the lake is placed in the sequence of natural variability. If not, the level of variability will be much higher, making the act of detecting human impact more difficult.

9.1.2 Value judgements – setting environmental values for management

Assessment and value judgements

The concept of condition assessment requires a value judgement. It was argued that the status of a suite of elements may also lead to a definition of condition.

It was then noted that the condition of the wetlands needs to be expressed in terms of its ecological character, with the ability to indicate change, and hence warn if an element is at risk. The notion of a value judgement was revisited as the loss of one element may result in gaining another. A judgement on which element is to be prioritised and valued would then have to be made. It was suggested that the referential wetland may then not be appropriate as values need to be defined, rather than simply taken from the reference/wetland.

9.2 Risk management approaches

Results of an assessment of extent and condition could be used to inform a risk management strategy. Monitoring through periods of vulnerability, and around thresholds, for example may provide information on the level of risk, and may be used to trigger proactive mitigation measures.

9.3 Remote methods or ground testing – when and why?

The monitoring/assessment methodology used will need to be tailored to the scale, purpose and skill level, funds, and knowledge base of the responsible party. While remote sensing is appropriate, and cost and time-efficient in some cases, it may provide inaccurate or incomplete information in others. It was noted that, where possible, remote (satellite) data should be 'ground-truthed' through on-ground field testing or survey.

It was also noted that in order to determine the baseline condition of a wetland, monitoring must be repeated over a significant period of time (this will depend upon the wetland, the indicator and the geographic location and climate). The need for multiple monitoring events in order to determine the condition was acknowledged.

9.4 Extent of the wetlands

It is difficult to draw boundaries around wetlands, as their interconnectedness within the catchments, and to other wetlands, is a defining feature of these systems. Indicators of extent were not discussed in detail.

9.5 Users' needs and capabilities

A key factor in defining a set of appropriate, practical and accurate indicators is heavily reliant on the available level of knowledge and expertise applied throughout the process. The workshop discussions resolved that contextual information and knowledge of key factors, processes, linkages, and the ecological function and cycle of individual wetlands are necessary. Below is a list of the areas of required knowledge:

- Knowledge of the individual wetland with which you are dealing. Factors include stability, position in cycle, temporal scale, and regional climatic and geomorphological overlay.
- Conceptual information of the cycles of types and subtypes of wetlands.
- Periods of vulnerability/thresholds/break points.
 Monitoring/testing should be conducted during these times.
- The relationship between health and time since flooding.
- Depending on the level of skills required, monitors may need to know the link between patterns and processes.
- Contextual information regarding particular factors. For example, when sampling biota, the maximum bio-productivity of a wetland may need to be known.
- The spatial scale of the entire wetlands, e.g. small wetlands may be remnants of larger wetlands.
- The capacity to relate indicators and measures to existing wetland inventories and knowledge systems.

10 Summary

The workshop produced a number of insights around the development of an indicator framework for wetland extent and condition:

- Wetland indicators must have a defined purpose, and be tailored to meet this purpose.
- The level of information required to be produced by the indicator must be defined in terms of temporal and spatial scale.
- The appropriateness of the level of skill required and cost-effectiveness of the assessment methods are critical determining factors in developing an indicator framework.
- There is a risk in using descriptive elements as indicators. In some instances, however, descriptors may be able to function as indicators.
- An indicator framework will include a matrix of generic and specific indicators.
- A level of background knowledge is required, in order to accurately assess the condition and extent of a wetland, with regard to the individual wetland cycle, or regional climatic system.
- Conceptual models will be developed.
- There is a possibility of taking a risk based approach.
- Types of indicators could align with the three elements of pressure, vector, and response.

11 Way Forward

The final task of the workshop was to identify mechanisms for on-going participation and a way forward for the program. Below are the key identified mechanisms for the advancement of the programme.

- There is a need for a commitment from the State and Federal Governments in terms of financial and human resource contributions. Further to this it was noted that regional involvement would be integral to this process.
- The conceptual models for the wetland types and sub-types would be further developed with the assistance of specialists before undergoing a peer review process.
- It was suggested that participants be sent the key findings/outcomes of the workshop, and be given the opportunity to comment on the draft report. In order to foster ongoing information sharing and discussion on the topics raised in the workshop, an email network will be established. Possible future small group workshops based around key themes was supported by workshop participants. One desired outcome of this information sharing would be a complete database of potential assessment methods in use throughout Australia.

Appendix A: Workshop Program – June 8 & 9, 2006

Day 1

,		
12:00 Ligh	t lunch on arrival	
12:35	Welcome and introduction	Mary Maher
1:00	Queensland Wetlands Programme	Peter Macdonald
	Wetlands indicators project/goal of the workshop	Di Conrick
	Indicators inuse throughout Australia	Bruce Gray
	Index of wetland condition	Janet Holmes
	Criteria for indicator selection	Bruce Gray
	Indicators literature search	Mike Ronan
	Wetland systems and types/bioregionalisation	Bruce Wilson
1:50	Lacustrine wetlands extent and condition	
3:00 Aftern	noon tea	
3;20	Issues and challenges for defining indicators	
4:30	Complete Lacustrine indicators	
5:00	Close	
7:00 Dinne	er	
Day 2		
8:45	Complete any issues from Day 1	
9:00	Wetlands Inventory Database project	Mike Ronan
	Pressures and threats	John Bennett
	National picture – Matters for Targets and NLWRA	Alana Innes
9:20	Palustrine wetlands extent and condition	
10:45 Mor	ning tea	
11:10	Complete Palustrine indicators	
11:30	Groundwater wetlands extent and condition	
12:15 Lund	ch	
1:00	Complete Groundwater indicators	
2:00	Discussion on proposed indicators	
2:50	Synthesis of indicators and links to other wetland to	ypes
3:15 Aftern	noon tea	
3:30	Discussion	
	 Recommendations for reasearch and manage 	gment
	 Applicability for national use 	
4:00	Thanks and close	

Appendices

Appendix B: Participant List

	Delegate	Organisation	Jurisdiction			
	Angela Arthington	Griffith University	Queensland			
	Donna Audas	Great Barrier Reef Marine Park Authority	Australian Government			
*	John Bennett	Environmental Protection Agency	Queensland			
	Stewart Blackhall	Department of Primary Industry, Water and Envronment	Tasmania			
	Andrew Brooks	Griffith University	Queensland			
	Cassie Burns	WetlandCare Australia	New South Wales			
	Barry Butler	James Cook University	Queensland			
	Satish Choy	Department of Natural Resources & Water	Queensland			
	Paul Clayton	Environmental Protection Agency	Queensland			
	Lynda Collins	Department of the Environment, Water, Heritage and the Arts	Australian Government			
	Diane Conrick	Department of Natural Resources & Water	Queensland			
	Alison Curtin	Department of Environment and Conservation	New South Wales			
	Mark Cushing	Environmental Protection Agency	Queensland			
	Jenny Davis	Murdoch University	Western Australia			
	Louisa Davis	Department of Natural Resources & Water	Queensland			
	Lindsay Delzoppo	Environmental Protection Agency	Queensland			
	Brendan Edgar	Land & Water Australia	Australian Government			
	Steve Elson	Environmental Protection Agency	Queensland			
*	Rod Fensham	Environmental Protection Agency	Queensland			
	Paul Frazier	University of New England, NSW	New South Wales			
	Peter Gehrke	CSIRO	Queensland			
*	Bruce Gray	Department of the Environment, Water, Heritage and the Arts	Australian Government			
	Margaret Greenway	Griffith University	Queensland			
	Jonathon Hodge	Environmental Protection Agency	Queensland			
	Danielle Hardie	Department of Primary Industry, Water and Environment	Tasmania			
	Emma Hawkins	Lloyd Consulting	Queensland			
*	Janet Holmes	Department of Sustainability and Environment	Victoria			
*	Alana Innes	National Land & Water Resources Audit	Australian Government			
	Roger Jaensch	Wetlands International - Oceania	Queensland			
	Arthur Knight	Environmental Protection Agency	Queensland			
	Paul Lawrence	Department of Natural Resources & Water	Queensland			
	Brad Lewis	Department of the Environment, Water, Heritage and the Arts/Department of Agriculture, Fisheries and Forestry	Australian Government			

	Delegate	Organisation	Jurisdiction
	John Lowry	Environmental Research Institute of the Supervising Scientist	Northern Territory
	Mike Lyons	Department of Conservation and Land Management	Western Australia
*	Peter Macdonald	Environmental Protection Agency	Queensland
	Mary Maher	Mary Maher & Associates	Queensland
	Jon Marshall	Department Natural Resources & Water	Queensland
	Belinda McGrath- Steer	Department for Environment and Heritage	South Australia
	Glenn McGregor	Department of Natural Resources & Water	Queensland
	Glen Moller	Department of Natural Resources & Water	Queensland
	Kay Montgomery	South East Queensland Catchments	Queensland
	Peter Negus	Department of Natural Resources & Water	Queensland
	Naomi Nelson	Department of the Environment, Water, Heritage and the Arts	Australian Government
	Phil Papas	Department of Sustainability and Environment	Victoria
	John Patten	Department of Natural Resources	New South Wales
	David Reid	Burdekin Dry Tropics NRM Regional Body	Queensland
*	Mike Ronan	Environmental Protection Agency	Queensland
	Glen Scholz	Department of Water, Land and Biodiversity	South Australia
	Fran Sheldon	Griffith University	Queensland
	Holly Smith	Department of Conservation and Land Management	Western Australia
	Brian Stockwell	Department of Primary Industry & Fisheries	Queensland
	Terri Svensson	Department of Natural Resources & Water	Queensland
	Jim Tait	EcoConcern	New South Wales
	Lynne Turner	Environmental Protection Agency	Queensland
	Clayton Vale	Department of Natural Resources & Water	Queensland
	Simon Ward	Department of Natural Resources, Environment and the Arts	Northern Territory
*	Bruce Wilson	Environmental Protection Agency	Queensland
	Christian Witte	Department of Natural Resources & Water	Queensland
	Sarah Young	Environmental Protection Agency	Queensland

Appendices

Appendix C: Presentations

Presentation C1: Queensland Wetlands Programme

Peter Macdonald, Environmental Protection Agency, Queensland

Today's Briefing

- · Recap on the Qld Wetland Programme
- · Update on allocations
- Questions

Queensland Wetlands Programme

Aim: to support projects and programs that will result in longterm benefits to the sustainable use, management, conservation and protection of Queensland wetlands

Component programmes are:

- -Qld NHT Wetlands Programme
- -GBR Coastal Wetlands Protection Programme

Key Elements of the Queensland Wetlands Programme

- Managed by Queensland Wetlands Joint Government Taskforce - DEH, EPA, DPI&F, DNRM, DLGP, GBRMPA
- Co-chaired by Lindsay Delzoppo (EPA) and Chris Schweizer (DEH)
- Role of Taskforce -- to integrate and prioritise wetland investment under funding programs to ensure complementarity and efficiency
- 5 year program to 2007/2008

Great Barrier Reef Coastal Wetlands Protection Programme

- Wholly funded \$8 million (over 5 years) by the Australian Government
- To develop and implement measures for long term conservation and management of wetlands in the GBR catchment as per the strategies contained in the Reef Plan
- Funding open to to all interests; NRM bodies, Local Gov, Stakeholder Groups or landholders.

NHT Wetlands Programme

- \$7.5million + \$7.5million in-kind (over five years) to support Queensland meet obligations to conserve and manage wetlands as outlined in the Bilateral Agreement (CI 24)
- Projects funded to support development and implementation of new statutory planning and development arrangements to protect wetlands
- Complements other AG funded wetland programs
- Is a 'state-wide allocation', not part of the indicative allocation directly available to regional NRM bodies

Initial Round of Funded Projects: **NHT Programme**

- 1. Mapping and classification of wetlands (\$2 million-EPA leading) GBR catchments due mid 2006, rest mid 2007
- 2. Wetland management profiles (\$278,000- EPA leading) complete
- 3. Information review and gap analysis (DNRW leading) near completion
- 4. Monitoring and evaluation strategy for Queensland Wetland Programme (DNRW leading) complete

Initial Round of Funded Projects: GBR Coastal Wetlands Programme

- 1. Wetland prioritisation Decision Support System (DEH) due mid 2006
- 2. Investigating incentives relevant to wetland conservation (Coastal CRC) complete
- 3. Pilot protection programme for on-ground delivery of wetland conservation and management (\$2million DEH leading, delivered by consortium of CVA, WCA and ACTFR) in progress
- 4. Wetlands display and educational package -(GBRMPA leading) near completion
- 5. Wetlands acquisition (EPA leading) in progress
- Wetlands module for GLM I (DPI&F leading) due mid

New Projects under NHT Wetlands Programme

- Impact of proposed regulatory regime for wetland conservation (EPA)
- Methodology for identifying and mapping ecological, including hydrological connectivity of natural wetlands
- 3. Critical wetland support guidelines (EPA)
- 4. Soils indicators of wetlands (DPI&F)
- Wetlands monitoring scoping study (DNRW)
- 6. Wetlands information capture component (EPA)
- 7. GBR public reserves management concept (FNQNRM)
- Improving wetland management in agricultural systems (DPI&F)

New projects under the GBRCWPP

- Resourcing wetland GBR Nature Refuge negotiations (EPA)
- Rehabilitation Guidelines for GBR catchments (DEH)
- Decision Support System Implementation (DEH)
- 4. On-ground projects under the GBR coastal wetlands pilot programme

Both programmes

1. Communications strategy framework (EPA)

GBRCWPP Pilot Onground Projects

- · Horseshoe Lagoon (Burdekin-Dry Tropics)
- · Healeys Lagoon (Burdekin-Dry Tropics) Cungulla (Burdekin-Dry Tropics)
- Goorganga (Mackay Whitsundays)
 Lagoon Creek (Wet Tropics)
- Pasturage Reserve (Mary Burnett) Splitters Creek (Mary Burnett)
- Kinka (Fitzroy Basin)
- Southern Pioneer (Mackay Whitsundays) Padaminka (Mackay Whitsundays)
- Stuart Creek (Burdekin-Dry Tropics)
- Serpentine Lagoon (Burdekin-Dry Tropics) Thuringowa (Burdekin-Dry Tropics)
- Mulgrave/Russell (Wet Tropics)
- Douglas Shire (Wet Tropics)

Queensland Wetland Programme updates

Appendices

Presentation C2: Wetland Indicators Project/Goal of the workshop

Diane Conrick, Department of Natural Resources & Water, Queensland

Queensland Wetlands Programme

Scoping study for monitoring wetland extent and condition

- · Wetlands Inventory Database project
- Monitoring, Evaluation and Reporting Strategy
 –baseline resource condition assessment

Project Objectives

- Determine appropriate resource condition indicators and methodologies
 - literature search
- workshop
- Identify resource condition parameters for inclusion in:
 - the Wetlands Inventory Database
 - baseline resource condition assessment for the QWP.
- Advise the National Matters for Target review of wetland indicators

Workshop Objective

Explore and determine indicators and methodologies for wetland extent and condition for Lacustrine, Palustrine and Groundwater wetlands.

Workshop Outputs

- Conceptual models
- · Indicators and methodologies:
 - Broad-application
 - Specific-application
 - Indicators for development
- · Recommendations for research and management
- · Applicability for national use

Presentation C3: Indicators in use throughout Australia

Bruce Gray, Department of the Environment and Heritage, Australian Government

Victoria

- Index of Wetland Condition (an index of several sub-indices which relate to wetland structure)
- Method has been developed, testing over the next 2 years
- Monitoring: WQ monitoring, Gippsland Lakes IWC, Salinity monitoring in the Wimmera by CMA, Spencer monitored the Murray billabongs

Queensland

- Currently ad hoc, not coordinated or comprehensive
- Mainly water quality (field and remote sensing)
- Little consistent time-series
- Mapping and classification project, wetlands inventory
- State of the Rivers, AusRivAS, mound springs monitoring of extent

South Australia

- Ad hoc, opportunistic in regions
- Inventory work: rapid assessment, extent and distribution, and condition
- Difficult in arid areas
- Using surrogates to look at long-term changes

Tasmania

- TasVeg: vegetation community-based assemblages modelled on the IWC; uses benchmark assessment forms for wetlands
- Tas CFEV: uses condition assessment (expert opinion) and naturalness score; state-wide coverage
- No systematic monitoring
- AusRivAs, Waterwatch, Environmental Flows

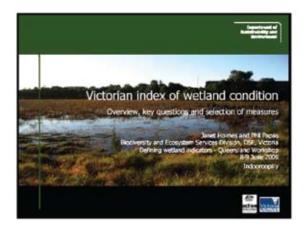
Western Australia

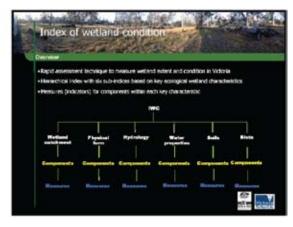
- Statewide wetland mapping project; broadscale and consistent over 10 years
- Covers invertebrates, birds, WQ, geomorphology, hydrology
- Gaps in Rangelands
- Drafting classification, prioritisation for the State

New South Wales

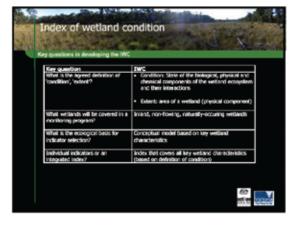
- Developing a new M&E Strategy; currently under review
- IMEF, Hydromonitoring, Waterbirds, Vegetation extent not collated
- Condition of mound springs
- · Wetland mapping
- · CMA mapping and prioritisation

Northern Territory


- Inventory work in Douglas, Daly, Greater Darwin
- No real broadscale monitoring
- Longterm monitoring by ERISS in Kakadu
- Beginning to look at integrated condition monitoring using vegetation mapping, WQ, biota, and hydrology

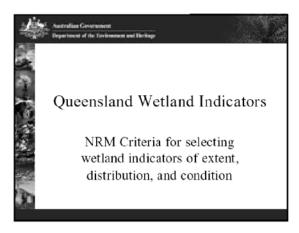

Commonwealth (National and International)

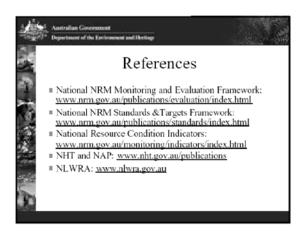
- International: Ramsar COP9; Millenium Ecosystem Assessment; rapid assessment report from COP9 (CBD/Ramsar)
- National: MDBC report by Baldwin et al.;
 Colonial nesting birds surveys (SE: Kingsford;
 West: Halse; Tropical: Bayliss)

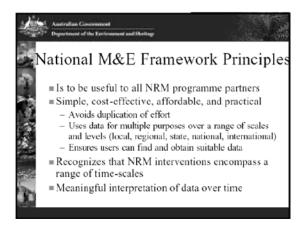

Presentation C4: Victorian Index of Wetland Condition

Janet Holmes, Department for Sustainability and Environment, Victoria

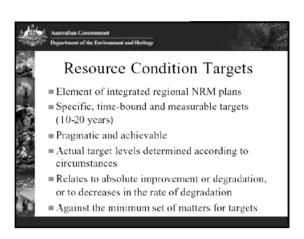


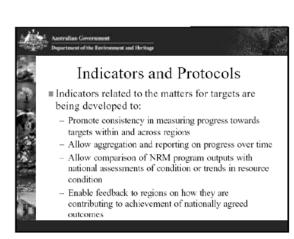


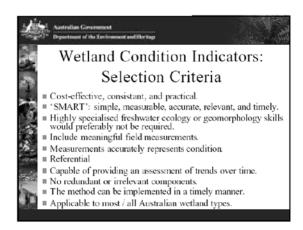


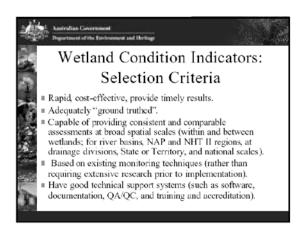

Presentation C5: Criteria for indicator selection

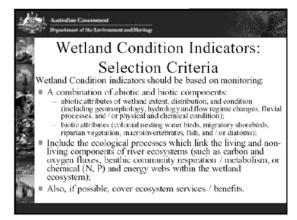

Bruce Gray, Department of the Environment and Heritage, Australian Government

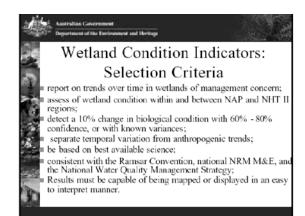


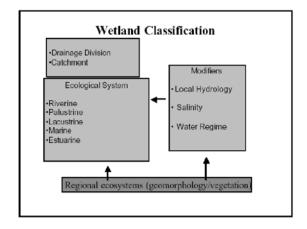


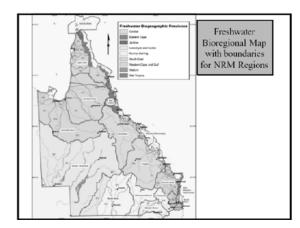


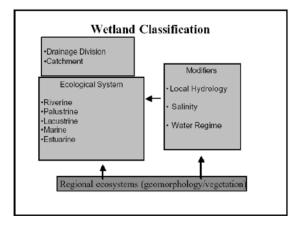






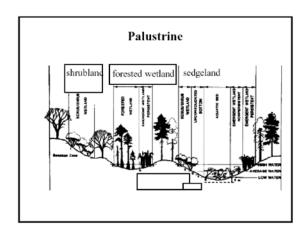

Presentation C6: Wetland systems and types/ bioregionalisation


Bruce Wilson, Environmental Protection Agency, Queensland

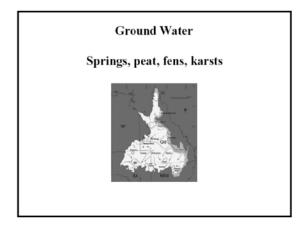

Wetland Definition

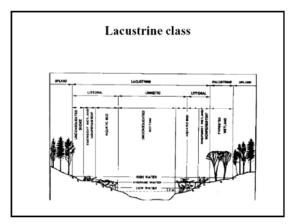
Areas of permanent or periodic/intermittent inundation, with water that is static or flowing fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed 6m. To be a wetland the area must have one or more of the following attributes:

- at least periodically the land supports plants or animals that are adapted to and dependent on living in wet conditions for at least part of their life cycle, or
- ii. the substratum is predominantly undrained soils that are saturated, flooded or ponded long enough to develop anaerobic conditions in the upper layers or
- the substratum is not soil and is saturated with water, or covered by water at some time.

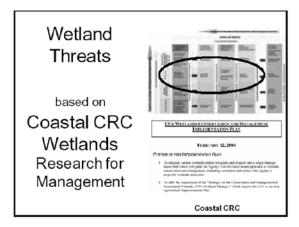


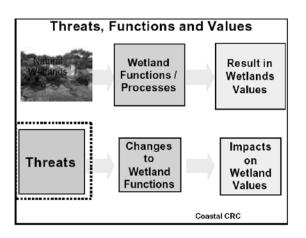
Lacustrine Littoral Limnetic Littoral Pringing palustring

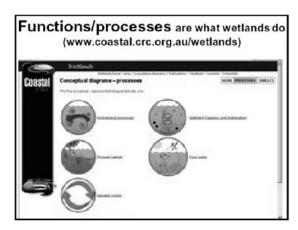

Lacustrine

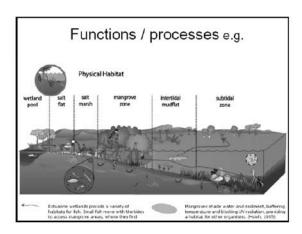

- ·Inland versus coastal
- •Permanent to ephemeral hydrology
- ·Fresh to Saline chemistry
- •Geomorphic setting ranges from perched versus overflow versus dune field lakes
- •Disturbances to hydrology, grazing of fringes..

Palustrine


- •Geomorphic setting depressions on floodplains, closed depressions on Tertiary plateaus, billabongs, seeps on sides of hills..
- Vegetation ranges from (paperbark) woodlands to sedgelands and aquatics
- •Disturbance includes bunding, grazing, weeds, cropping, draining, lazer leveling, catchment disruption to hydrlogy etc






Presentation C7: Pressures and Threats

John Bennett, Environmental Protection Agency, Queensland

Threats are actions that

functions / processes and

negatively on wetland

have the potential to impact

Values are attributes with subjective worth, merit, quality, or importance e.g.

- · direct uses food, recreation, or timber
- · indirect uses water quality, flood control
- possible future uses biodiversity or conserved habitats
- · cultural and spiritual value
- · existence value

hence their associated values

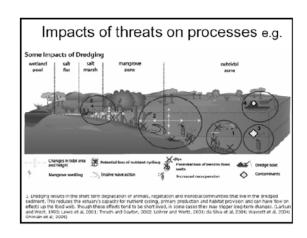
Coastal CRC

Coastal CRC

Threats

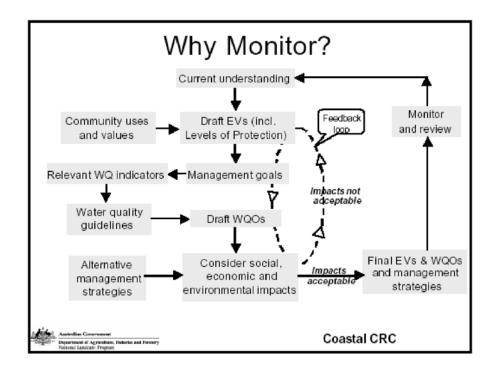
- > Draining, filling and bed mining (dredging) of wetlands impacts on all wetland processes
- > Hydrological modification
- impact on surface and ground water hydrology and there is some uncertainty about its effects on other wetland processes and attributes
- > Effect of increased hydraulic efficiency of river channels - impact on filter function of wetlands and surface and ground water hydrology
- ➤ Water pollution
- impact on water quality, habitat provision and biogeochemical cycling and biological function

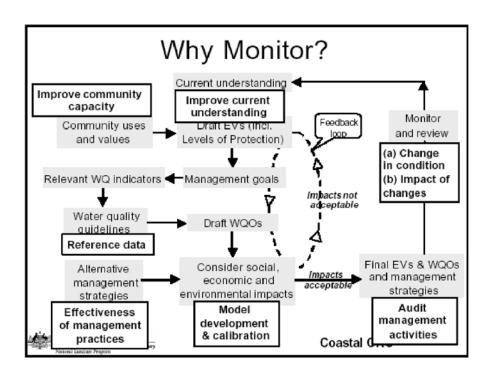
Coastal CRC


Threats (continued)

- Nutrient enrichment
 - impact on water quality, primary productivity and biogeochemical cycling
- Erosion and sediment inputs
 impact on water quality, biological functioning and biogeochemical cycling
- Invasion by pest species
 - threaten habitat provision, biodiversity and biological function
- threaten water quality, habitat provision and biodiversity

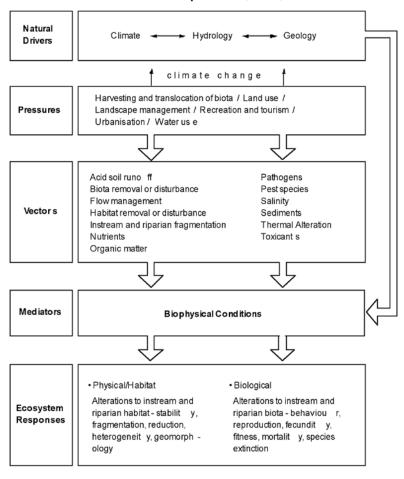
Coastal CRC

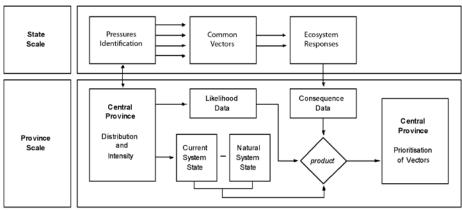

Threats (continued)


- - threaten water quality, biogeochemical cycling, habitat provision and biological function
- Climate change
- threat but limited understanding about the actual impacts
- Recreational activities less threatening to wetlands
- Removal of riparian vegetation
- impact on wetlands, habitat provision and biodiversity and maybe filter function and biogeochemical cycling
- > Barriers impacts on a range of wetland functions

Presentation C8: Why Monitor

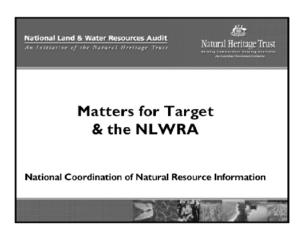
John Bennett, Environmental Protection Agency, Queensland

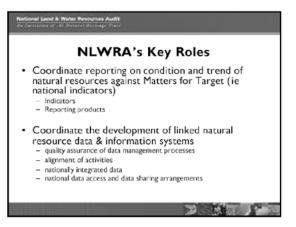


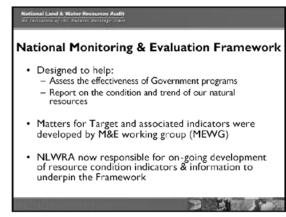

Presentation C9: Stream and Estuaries Assessment Program

Glen Moller, Department of Natural Resources & Water, Queensland

Pressure - Vector - Response (PVR) Framework




PRV models for Queensland aquatic ecosystems applied to Central Province



Presentation C10: Matters for Target and the NLWRA

Alana Innes, National Land & Water Resources Audit, Australian Government

Matters for Target Land salinity Soil condition Inland aquatic ecosystems (Rivers & Wetlands) Nutrients in aquatic environments Turbidity Surface water salinity Estuarine, coastal and marine Native vegetation Significant native species and ecological communities Invasive species Social and economic

National Coordinating Committees Most MfT (theme) have an NCC Each NCC has a sponsoring agency (DAFF or DEH) NCCs tasks within M&E framework Reaching agreement on indicators and methods Defining relevant information reporting products Identifying appropriate data and information management systems

Beyond the Indicators

Implementation Trials - data availability & development of information products

A national information system & standards (Australian Wetland Inventory?)

A reporting mechanism - Australia's Resources Online (ARO)

Appendix D: Workshop Groups

Lacustrine groups	
Arid zone lakes (salt)	Inland non-arid (depressional)
Louisa Davis	Donna Audas
Roger Jaensch	Stewart Blackhall
Glenn McGregor	Cassie Burns
Glen Scholz	Barry Butler
Simon Ward	Lynda Collins
Bruce Wilson	Alison Curtin
	Danielle Hardie
	John Lowry
	Jim Tait
Artificial	Inland salt
Mark Cushing	Paul Frazier
Steve Elson	Bruce Gray
Alana Innes	Mike Lyons
Belinda McGrath-Steer	Peter Macdonald
Glen Moller	Kay Montgomery
Naomi Nelson	Peter Negus
Clayton Vale	Lynne Turner
Christian Witte	
Coastal dune	Terminal depression
Jenny Davis	John Bennett
Peter Gehrke	Andrew Brooks
Jon Marshall	Paul Clayton
Phil Papas	Brendan Edgar
David Reid	Jonathon Hodge
Mike Ronan	Arthur Knight
Holly Smith	John Patten
Brian Stockwell	Sarah Young
Terri Svensson	

Palustrine groups	
Artificial (bore drains)	Freshwater meadows
Kay Montgomery	Mark Cushing
John Bennett	Alana Innes
Brendan Edgar	Glen Moller
Jonathon Hodge	Naomi Nelson
Arthur Knight	Clayton Vale
John Patten	Christian Witte
Sarah Young	Danielle Hardie
	Satish Choy
Coastal forest	Inland arid zone swamps
Brian Stockwell	Louisa Davis
Stewart Blackhall	Janet Holmes
Cassie Burns	Roger Jaensch
Barry Butler	Glenn McGregor
Lynda Collins	Simon Ward
Alison Curtin	
Coastal sedge	Herbs and forbs
Donna Audas	Jenny Davis
John Lowry	Peter Gehrke
Jim Tait	Jon Marshall
Paul Frazier	Phil Papas
Bruce Gray	David Reid
Peter Macdonald	Mike Ronan
Peter Negus	Holly Smith
Lynne Turner	Terri Svensson
	Mike Lyons
Natural groundwater	
Glen Scholz	
Bruce Wilson	
Steve Elson	
Belinda McGrath-Steer	
Paul Clayton	
Rod Fensham	
Brad Lewis	

Appendix E: Palustrine/Lacustrine Definitions

Lacustrine System

From Cowardin et al. 1979.

"The Lacustrine System (Figure 1) includes wetlands and deepwater habitats with all of the following characteristics: (1) situated in a topographic depression or a dammed river channel; (2) lacking trees, shrubs, persistent emergents, emergent mosses or lichens with greater than 30 percent areal coverage; and (3) total area exceeds 8ha (20 acres). Similar wetland and deepwater habitats totalling less than 8ha are also included in the Lacustrine System if an active wave-formed or bedrock shoreline feature makes up all or part of the boundary, or if the water depth in the deepest part of the basin exceeds 2m (6.6 feet) at low water."

For the WMC project, lacustrine water may be tidal or non-tidal but ocean derived salinity is always less than 0.5ppt (Cowardin et al. 1979).

"Limits. The Lacustrine System is bounded by upland or by wetland dominated by trees, shrubs, persistent emergents, emergent mosses, or lichens. Lacustrine Systems formed by damming a river channel are bounded by a contour approximating the normal spillway elevation or normal pool elevation, except where Palustrine wetlands extend lakeward of that boundary. Where a river enters a lake, the extension of the Lacustrine shoreline forms the Riverine-Lacustrine boundary.

Description. The Lacustrine System includes permanently flooded lakes and reservoirs (e.g., Lake Superior), intermittent lakes (e.g., playa lakes), and tidal lakes with ocean-derived salinities below 0.5 percent (e.g., Grand Lake, Louisiana). Typically, there are extensive areas of deep water and there is considerable wave action. Islands of Palustrine wetland may lie within the boundaries of the Lacustrine System."

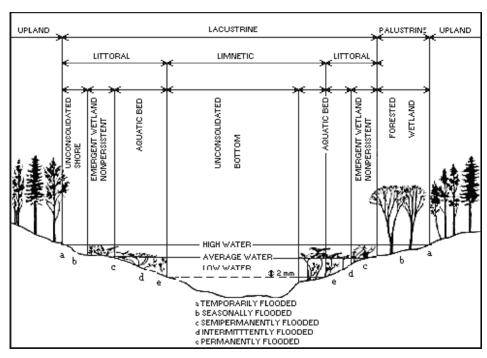
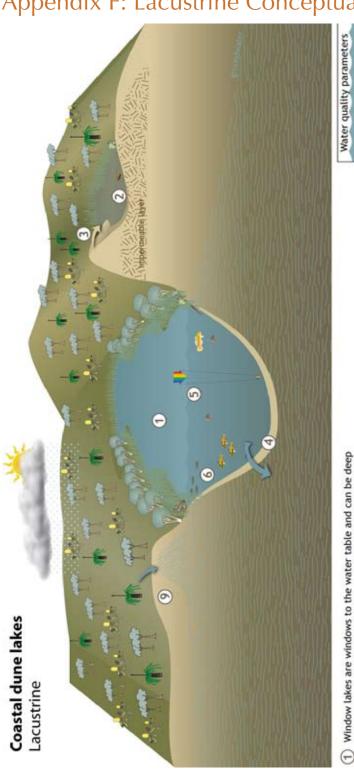


Figure 1. Distinguishing features and examples of habitats in the lacustrine system (from Cowardin et al. 1979).

Palustrine System

The following is taken from Cowardin et al. (1979) and Blackman et al. (1992) and slightly modified to fit the Australian environment.

The palustrine system includes all non-tidal wetlands dominated by trees, shrubs, persistent emergents, emergent mosses or lichens, and all such wetlands that occur in tidal areas where salinity due to ocean-derived salts is below 0.5 percent. It also includes wetlands lacking such vegetation which have the following three characteristics: (a) where active waves are formed or bedrock features are lacking; (b) where the water depth in the deepest part of basin less than 2m at low water; and (c) the salinity due to ocean-derived salts is still less than 0.5 percent.


Boundaries. The palustrine system is bounded by upland or by any of the other four systems.

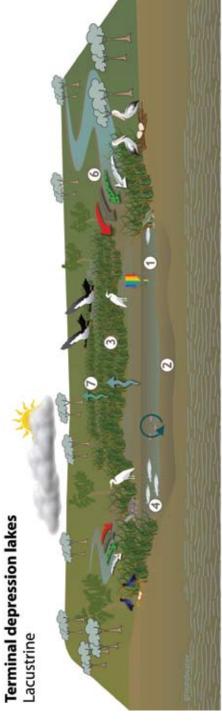
Description. The palustrine system was developed to group the vegetated wetlands traditionally called by such names as marsh, swamp, bog, fen, and prairie, which are found throughout the world. It also includes the small, shallow, permanent or intermittent water bodies often called ponds. Palustrine wetlands may be situated shoreward of lakes, river channels, or estuaries; on river floodplains; in isolated catchments; or on slopes. They may also occur as islands in lakes or rivers. The erosive forces of wind and water are of minor importance except during severe floods.

The emergent vegetation adjacent to rivers and lakes is often referred to as "the shore zone" or the "zone of emergent vegetation" (Reid and Wood 1976), and is generally considered separately from the river or lake. As an example, Hynes (1970:85) wrote in reference to riverine habitats: "We will not here consider the long list of emergent plants which may occur along the banks out of the current, as they do not belong, strictly speaking, to the running water habitat". There are often great similarities between wetlands lying adjacent to lakes or rivers and isolated wetlands of the same class in basins without open water.

Figure 2. Distinguishing features and examples of habitats in the palustrine system (from Cowardin et al. 1979).

Appendix F: Lacustrine Conceptual Models

Threats to coastal dune lakes


primarily into lakes within actively moving dune systems

2) Perched takes occur when water is trapped above an impermeable layer

Sand dunes may fall into the lakes,

4) Silica sand substrate

- Waters are very clear and therefore light transmission is very high
 - 6 Low species richness and abundance but home to rare taxa 📣
- pH is quite low (5-6) V and biota are adapted to the acidic environment
- 8 Conductivity 🔻 and nutrient 💘 levels are very low

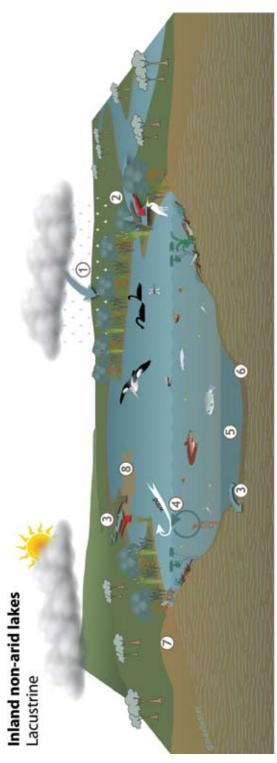
Water quality parameters Terminal depression lakes are shallow, highly turbid 😍 and largely heterotophic in the main water body and autotrophic at the margins

Threats to terminal depression lakes

Sediment layers can be up to 3m deep , laid down over 100,000 years

0

3 Lignum plants can cover much of the lake


4 Fish and bird abundance is high

(5) Boom bust populations of invertebrates 😭

⑥ River inflow brings nutrients , sediments , organic carbon and organisms

(7) There are high transpiration § and evaporation § rates

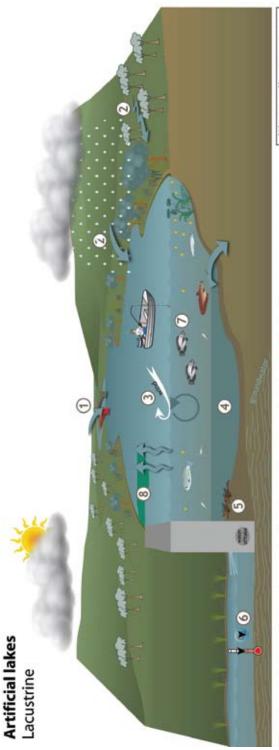
Dry Phase• Low fish and bird abundance

Water quality parameters

Overbank flow from adjacent rivers can provide the largest single input to the lake in flood events

1) Precipitation is the major input to the lake

Threats to inland non arid lakes


6 Fine sediments build up on the bottom of the lake

Stratification zones can form when there is no mixing

iggl(iggr) = iggl(iggr3 Overland flow — and groundwater are also minor inputs to the lake

- (7) Levee banks
- 8 Turbidity is variable with sediment 🔪 entering the lake in overland and overbank flow

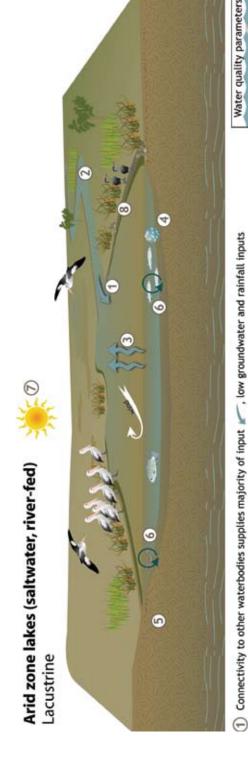
Dry Phase• Dissolved oxygen drops

Water quality parameters

Channel flow is the dominant source of water , sediment and nutrients to the lake

(2) Rainfall __ and overland flow ___ are also inputs of water to the lake

Threats to Artificial lakes


(7) There is a reduction in abundance and diversity of biota and conditions may favour pest species such as Tilapia 🦘 (8) There is the seasonal potential for blooms of toxic cyanobacteria in the upper layer with a scum forming

6 Low water temperature 📍 and low dissolved oxygen levels 📽 can be found in downstream waters

5 Sediment and detritus error can build up behind dam walls

4 Stratification zones
can form when there is no mixing

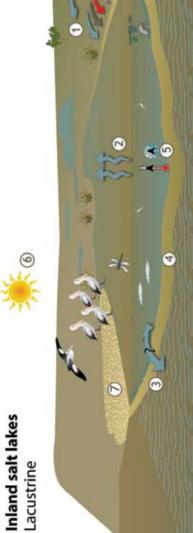
3 Wind & causing mixing of take waters

Threats to arid zone lakes

4 Conductivity gradients influence biota

3 Evaporation rates are very high

2 These lakes are generally terminal but may also occur within the channels of riverine systems


Soil permeability is low

6 Boom bust populations of invertebrates 😭 and fish 🗝

(7) Climate is a driving factor with low rainfall, high temperatures and wind

8 Bath ring effect of shallow littoral benthic production

Water quality parameters

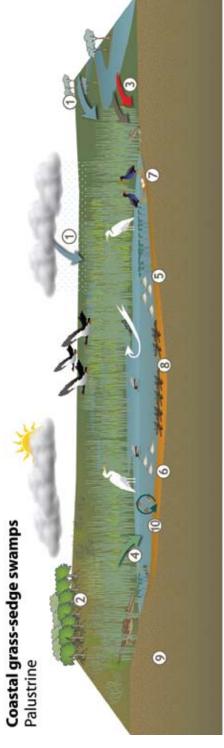
Threats to inland salt lakes

Evaporation rates are very high

1 Overland flow 🛹 is the most important input of water 🥕 , sediments 🖍 , and nutrients 🖊 to the system

Extent of groundwater interaction is unknown

Sand and clay substrate


S High water temperature and conductivity ...

Wery low rainfall

(7) A salt crust can form in areas where it dries out

Appendix F: Palustrine Conceptual Models

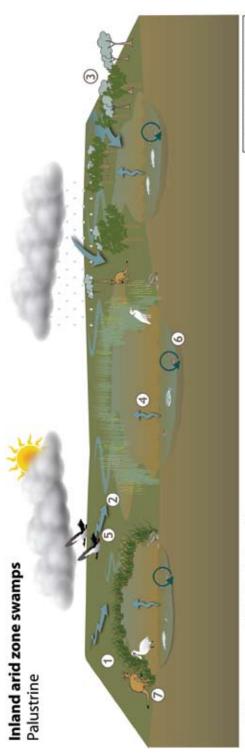
Water quality parameters

Overbank flow and precipitation are the major inputs of water 🖊 into the swamp

3 Nutrients and sediments are important inputs to the swamp

Swamps are located very close to marine environments

Allochthonous inputs of plant and animal matter / dominate


4

Threats to coastal sedge swamps

- Coastal swamps are an important fish nursery for fish species such as barramundi 🧢
 - Fish abundance is high in swamps but species diversity is low 9

Swamps are an important breeding area for waterfowl

- Potential acid sulphate soils (8)
- Fine sediments due to it being an old marine plain 6
- 9

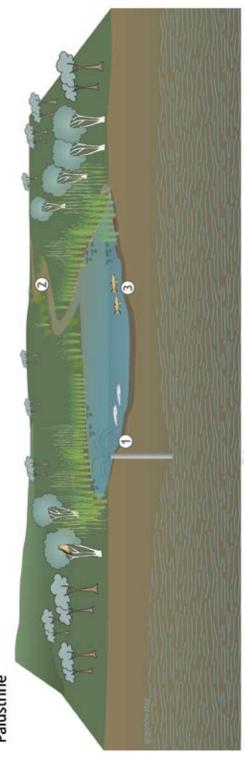
Threats to arid zone swamps

Arid zone swamps (especially shrub swamps) are important habitats for birds

Evaporation rates are high

Wooded swamps: dominated by trees 🏲 , inputs from precipitation 🥕 ,overland 🛹 and overbank 🦰 flow

Grass swamps: dominated by grasses , inputs from precipitation 🚩 and overland 🛹 flow


Shrub swamps: dominated by lignum 💨, inputs from precipitation 🥕 , overland 🛹 and overbank 🦯 flow

Arid zone swamps are defined by their vegetation:

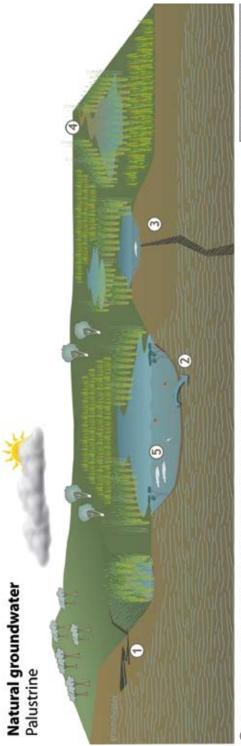
Boom bust populations of invertebrates 😓

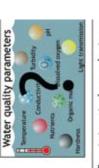
Swamps are an important habitat for terrestrial grazers

Artificial bore drains Palustrine

Water quality parameters

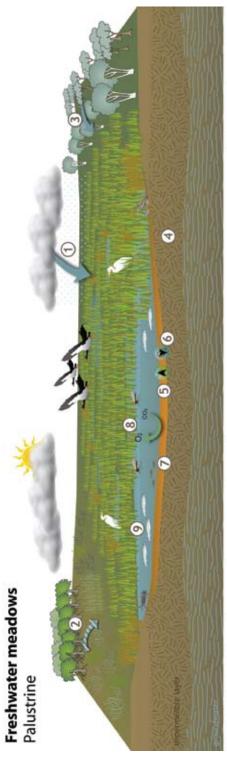
| Tringerature Conductive Open Defended Condu


Threats to artifical bore drains


(3) These bore drains may be the only available habitat for some biota in areas where natural artesian springs have dried

(2) Water quality decreases and weeds increase with distance down channel

(1) Groundwater fed systems from the Great Artesian Basin


225

Threats to natual groundwater springs

- Break of slope, fractured rock groundwater spring with a local water source
- Watertable induced groundwater spring sourced by regional water source
- Mound spring fed by artesian water
- Can form into a channel with enough water flow
- High level of endemic species

Precipitation is the major input of water / into the meadow

2 Periodic inundations of seawater can be exchanged with the meadow

(3) Runoff of freshwater / from terrestrial areas

An impermeable layer and prevents the movement of water from the meadow into the groundwater

There is high organic matter 🔌 in the water column and sediments

6 Dissolved oxygen levels 🛞 in the sediments are low

Sediments have high sulfide levels

(8) Primary producitivity 🖎 👵 is high

9 Freshwater meadows are an excellent fish nursery ** with many endemic species

Threats to freshwater meadows

